Obsah

ÚVOD ... 5
1. POCÍTACOVÝ NÁVRH PLOŠNÝCH SPOJU ... 6
 1.1. Schematický návrh .. 6
 1.1.1. Tvorba schematických znácek ... 6
 1.1.2. Návrh elektronického schématu .. 7
 1.1.3. Definice vlastností součástek a spoju .. 7
 1.1.3.1. Popisy součástek ... 8
 1.1.3.2. Popisy spoju ... 8
 1.1.4. Kontrola návrhových pravidel .. 8
 1.1.5. Výstupy schematického návrhu .. 8
 1.2. Návrh plošného spoje .. 9
 1.2.1. Princip vrstev a jejich využití ... 9
 1.2.2. Knihovny pouzder .. 9
 1.2.3. Nactení netlistu ... 10
 1.2.4. Nastavení technologických podmínek .. 10
 1.2.5. Obrys plošného spoje, výrezy a montážní otvory .. 12
 1.2.6. Rozmístění součástek .. 12
 1.2.7. Vedení spoju .. 12
 1.2.8. Finální úpravy ... 13
 1.2.8.1. Podklady pro formátování na výsledný rozmer ... 13
 1.2.8.2. Sesazovací znacky ... 13
 1.2.8.3. Popisy desky plošného spoje .. 14
 1.2.8.4. Zlacené konektory ... 15
 1.2.9. Kontrola návrhových pravidel ... 15
 1.2.10. Generování technologických dat .. 15
 1.2.10.1. Podklady pro výrobu vícevrstvých spojů ... 15
 1.2.10.2. Podklady pro osazování .. 18
 2. TECHNOLOGIE VÝROBY PLOŠNÝCH SPOJU ... 19
 2.1. Semiaditivní metoda výroby plošných spojů .. 19
 2.1.1. Výroba dvoustranných desek plošných spojů ... 19
 2.1.2. Výroba vícevrstvých desek plošných spojů ... 24
 2.2. Trísty presností ... 25
 3. POVRCHOVÁ MONTÁŽ ... 27
 3.1. Součástky pro povrchovou montáž ... 29
 3.1.1. Pouzdra s metalizovanými ploškami .. 29
 3.1.2. Pouzdra s páskovými vývody ... 30
 3.1.3. Pouzdra BGA ... 31
 3.2. Pájení SMD .. 31
 3.2.1. Princip vlny ... 32
 3.2.2. Pájení pretavením ... 33
 3.2.3. Rúcní pájení a opravy SMD .. 33
 4. VLASTNOSTI PLOŠNÝCH SPOJU .. 34
 4.1. Odpor ... 34
 4.1.1. Skin efekt .. 34
 4.2. Kapacita .. 35
 4.3. Indukcnost .. 37
 4.4. Impedance .. 38
 4.5. Rychlost šíření signálu ... 39
 4.6. Vliv kapacitní zátěže ... 40
 4.7. Preslechy ... 40
5. ELEKTROMAGNETICKÁ KOMPATIBILITA ... 46
5.1. Základní pojmy a definice .. 46
5.2. Legislativní rámec v České republice .. 47
 5.2.1. Zákon c.22/1997 Sb. a Nařízení vlády c.169/1997 Sb. 47
 5.2.2. Normy EMC – odolnost a vyzarování .. 49
5.3. Elektromagnetická kompatibilita a návrh plošného spoje 51
 5.3.1. Rušení ... 51
 5.3.1.1. Elektromagnetické pole vyzarované proudovou smyčkou 52
 5.3.1.2. Elektromagnetické pole vyzarované průmyslovým vodicem 53
 5.3.1.3. Kmitočtové spektrum lichobežníkového prubehu 53
 5.3.1.4. Souhlasné a nesouhlasné rušení ... 54
 5.3.2. Návrh plošných spojů z hlediska EMC ... 54
 5.3.3. Součástky a EMC .. 55
6. NÁVROHOVÁ PRAVIDLA .. 57
 6.1. Rozmístění součástek .. 57
 6.2. Razení vrstev plošného spoje .. 57
 6.3. Zemnení .. 58
 6.3.1. Jednobodové zemnení ... 58
 6.3.2. Vícebodové zemnení ... 59
 6.4. Blokování napájení .. 60
 6.4.1. Reálný kondenzátor .. 62
 6.4.2. Plošný spoj jako blokovací kondenzátor .. 62
 6.4.3. Návrh lokálního blokovacího kondenzátoru .. 63
 6.4.4. Návrh skupinového blokovacího kondenzátoru 63
 6.4.5. Návrh filtracního kondenzátoru .. 63
 6.4.6. Umístění blokovacích kondenzátorů na plošném spoji 64
 6.5. Napájecí zdroje .. 66
 6.5.1. Analogové stabilizátory .. 66
 6.5.2. Spínané zdroje .. 67
 6.6. CIŠICOVÉ OBVODY .. 68
 6.6.1. Pravidla související s návrhem schématu .. 68
 6.6.2. Pravidla související s návrhem rozmístění součástek a vedení spoju 69
 6.7. OBDVODY HODINOVÝCH IMPULZŮ ... 70
 6.7.1. Ochranné paralelní spoje .. 70
 6.7.2. Odrazy na vedení a jejich potlačení ... 71
 6.8. ANALOGOVÉ OBVODY ... 73
 6.9. A/D PREVODNIKY .. 74
 6.10. VÝKOVOVÉ SPINACÍ OBVODY .. 76
 6.11. VSTUPNÉ/VÝSTUPNÍ OBVODY .. 77
 6.11.1. Izolace a separace vstupnich/výstupních obvodů 77
 6.11.1.1. Filtrace vstupu a výstupu na plošném spoji 77
 6.11.1.2. Galvanické oddelení a premostení .. 78
 6.11.2. Ochrana pred ESD .. 78
 6.11.2.1. Ochrana I/O svorek ... 79
 6.11.2.2. Ochrana plošného spoje pred dotykom .. 79
POUŽITÉ ZKRATKY A SYMBOLY ... 80
LITERATURA ... 81
Úvod

Skriptum Metodika návrhu plošných spoju je studijní pomucka pro výuku predmetu „Metodika návrhu propojování součástek“ (34MPS) z celofakultní nabídky prezenční formy studia na Českém vysokém učení technickém v Praze, Fakulte elektrotechnické.

Skriptum je rozděleno do nekolika tématických cástí v souladu s tím, co potřebuje znát při své práci návrhár plošných spojů. I když se při návrhu plošných spojů velmi efektivně využívá počítač, neznámena to, že navrhovat plošné spoje na počítači je „klikání myší na pčíčku“. Návrh plošných spojů vyžaduje predevším (a to tak na první pohled nevypadá) komplexní znalosti v oblastech:

- technologie výroby plošných spojů,
- osazování a pájení,
- obvodové funkce součástek,
- teorie elektromagnetického pole

a predevším jejich skloubení a využití v praxi. Proto tento text nebude obsahovat návody na využití konkrétního pocítačového návrhového systému pro elektroniku. Jeho cílem je upozornit ctenáře na nejdůležitější problémy, které bude muset zdolat při návrhu elektronického schématu a plošného spoje. Zároveň – vzhledem k rozsahu skripta – není možné tuto oblast popsat vycerpávajícím způsobem. Skriptum si spíše klade za úkol upozornit ctenáře na problémy, se kterými se muže setkat, a odkázat na další literaturu.

V textu se budou vyskytovat i jiné jednotky délky než metry a jejich násobky. Naprostá většina součástek má své rozmery (predevším roztec pájecích plošek) definovány v násobcích palce, respektive milu (jedna tisícina palce). Proto se v praktickém návrhu plošných spojů automaticky užívá tehco jednotek. Pro prehlednost uvádíme prevodní vztahy:

- \(1" = 2,54 \text{ cm} \)
- \(1 \text{ mil} = 0,001" = 0,025 \text{ mm} \)
- \(1 \text{ mm} = 39,37 \text{ milu} \)

orientacne \(1 \text{ mm} \sim 40 \text{ milu} \)

Záverem snad jedna poznámka:

„Jak se má správne navrhovat plošný spoj?“ – „S citem. Je to nejen umelecké dílo...“
1. Pocítacový návrh plošných spojů.

S nástupem rychlých a výkonných obvodu, které stále častěji používáme při návrhu, prichází nutnost pečlivšího návrhu plošného spoje. Nejde jedno, kudy se vedou spoje, jaká je jejich délka a hlavne ke které součástce se má spoj zapojit dríve a ke které až o kousek dál. Stejné tak je důležité vedet, která součástka má být vedle které a jak dáleko. Nedodržení tohoto pravidla může znamenat v lepším prípadě sníženou odolnost, neprípustné vyzarování a v horším případě i nefunkčnost výrobku.

Využití pocítace při návrhu plošných spojů poskytuje návrháři velmi mocičné nástroje. Nejde jen o vlastní nakreslení schématu a návrh plošného spoje. Návrhové systémy pro elektroniku obsahují mnoho vstupu a výstupu, které usnadnou nejen návrh, ale i jeho další zpracování jak do podoby formální projektové dokumentace, tak do elektronické formy technologických dat, potřebných pro výrobu. Výstupy návrhového programu mohou tvořit podklady pro simulace. Bežné se provádějí simulace chování císelních nebo analogových obvodu. Vzhledem k nutnosti splňovat náročná kritéria elektromagnetické kompatibility se začínají využívat simulátory preslechu a vyzarování plošných spojů.

1.1. Schematický návrh

Zároveň je po celou dobu návrhu schématu nutné neustále si klást otázku: „Jak to vlastně bude vypadat na plošném spoji?“ Například zda vypínac, potenciometr, reproduktor atd. bude umístěno prímo na plošném spoji nebo na celním panelu, zda budou součástky v klasickém provedení nebo SMD, jaká bude nutná izolacní vzdálenost mezi jednotlivými uzly, nebudou nekteré spoje tak dlouhé, že bude nutné jejich impedancní prizpůsobení…

Konkrétní strategie návrhu schématu dále souvisí s použitým programem. I když s v této kapitole kladou za cíl popsat postup při návrhu plošného spoje co nejobecněji, budou následující kapitoly zatíženy faktm, že na katedre mikroelektroniky jsou používány programové produkty OrCAD [1]. Tento návrhový systém má filozofii návrhu schématu a plošného spoje založenou na dvou oddělených programech, a tedy i oddělených knihovnách. Pro prechod mezi schématem a plošným spojem se používá netlist.

1.1.1. Tvorba schematických znacík

Obr.1.1: Schematické znacky a) soucástek, b) symbolu.

Základním pilířem návrhu schématu jsou knihovny schematických znacík soucástek a symbolů. Za soucástku považujeme schematickou znacku, která bude mít prirazeno nejaké pouzdro a bude fyzicky existovat na plošném spoji. Symbol bude pomocná znacka prímo
neexistující na plošném spoji, bez níž by ale nebylo schéma funkční, tedy například znacka napájení (obrázek 1.1 b).

Každý návrhář pracuje s určitým okruhem součástek a má své zvyklosti v grafickém vyjádření elektronického zapojení. Je tedy nanevýš vhodné si programem nabízené knihovny usporádat a upravit podle svých potřeb. Nejde jen o grafickou podobu znacek, ale i o obsah položek a vlastností, jako jsou vzor poradového označení, hodnoty součástek, vsazení názvu pouzdra, případné nedefinování dalších popisů, například objednacího císla, ceny atd.

1.1.2. Návrh elektronického schématu

Z pohledu ovládání programu spočívá návrh elektronického schématu ve vyvolávání schematických znacek z knihoven, jejich umístování na pracovní ploše monitoru a propojování jejich vývodu. Návrhové systémy umožnijí hierarchický návrh a různé techniky propojování nejen pomocí vodicí. K dispozici jsou například sběrnice, náveští, napájecí symboly...

Z pohledu obvodového návrhu a návrhu plošného spoje je nutné dodržovat pravidla a zásady, popsané v kapitole Návrhová pravidla. Následuje výčet nejfrekventovanějších problémů, které by mel návrhář respektovat:

- Konfigurace konektoru, systém sběrnicí a propojovacích kabelu.
- Systém blokování napájení pomocí kondenzátoru a filtrace vodicí.
- Ochrany vstupu a výstupu, prípadne jejich galvanická oddelení.
- Volba součástek s ohledem na rušivé vyzarování a odolnost.
- Impedancné zakoncení dlouhých spojů.

Za nejcasteji porušovanou zásadu s velmi negativním dopadem na funkci obvodu je možné považovat podcenování významu blokování napájení pomocí kondenzátoru.

1.1.3. Definice vlastností součástek a spoje

Popisové položky a vlastnosti Schématu je možné rozdelit do nekolika skupin podle jejich významu:

- Detailnejší popis schematické dokumentace. Sem patří například císlování součástek, popis jejich hodnoty a typu, objednací císla z katalogu, upozornení na vysoké napětí, napetová úroveň duležitých uzlu...
- Popis pro následné simulace obvodového chování. Je možné zadat například odkaz na model součástky.
- Popisy vlastností pro návrh plošného spoje. Tyto popisy se mohou prostrednictvím netlistu promítnout do návrhu plošného spoje. Proto jim budeme venovat vetší pozornost. Rozlišujeme popisy součástek a elektrických spojů (uzlu).

1.1.3.1. Popisy součástek

- **Název pouzdra.** Jedná se o prirazení pouzdra součástce z knihoven pouzder. Toto je nejdužítejší a dá se ríci, že povinný popis.
- **Strana umístění na desce plošného spoje.** Již ve schématu je možné stanovit, zda bude součástka umístěna shora (ze strany součástek) nebo zespoda (ze strany spoje).
- **Konkrétní souradnice na plošném spoji.** Používá se predevším u spočtů, které se nacházejí na desce plošného spoje. Stavebnice více desek.
- **Zarazení součástek do skupin.** Pomocí císel je možné určit, je li součástka příslušná k určité skupině.
- **Uzamčení součástky.** Součástka je uzamčena a nebyla by možné ji manipulovat. Používá se predevším u spoje s výšinkou konkrétní skupinou součástek.

1.1.3.2. Popisy spoje

- **Stanovení povolených vrstev.** Je možné určit, ve kterých vrstvách vícevrstvého spoje je možné jednotlivé spoje veden.
- **Šířka spoje.** Definuje šířku spoje. Používá se například pro definici spojů s vyšším při vedení.
- **Izolací vzdálenost.** Je možné spoje izolovat na desce. Používá se pro určení izolací spoje.
- **Nastavení typu prokou.** Vybranému spoji se určuje, jaký typ a velikost prokou se nastaví pro přechod mezi vrstvami vícevrstvého spoje.

1.1.4. Kontrola návrhových pravidel

Krome výstupu pro národní analogové nebo digitální simulace chování obvodu umožňuje návrhové programy velmi operativní a účinnou kontrolu návrhových pravidel, která odhalí formální chyby typu „nezajímavé vývody“ a „vývody s více součástkami“. Taková kontrola má smysl pouze tehdy, kdy jsou-li v knihovnách schématických znacek správné definovány a určené prokoncování součástek.

Podobně kontrolou integritu hierarchického návrhu je to, že určité porty, které mají stejný název, musí být rovněž určeny na stejné úrovni schématu. A jelikož jsou ty porty, které mají stejný název, musí být rovněž určeny na stejné úrovni schématu.

Další bežnou chybou, kterou je nutné odstranit, je to, že jsou určeny pouze nekonečně v návrhu schématu. Součásti mu přísluší kontrola integritu hierarchického návrhu. Při hierarchickém návrhu tož nezřídka dochází k formální chybě při definici portu, zajišťující propojení mezi jednotlivými úrovnemi schématu. A jelikož jsou ty porty, které mají stejný název, musí být rovněž určeny na stejné úrovni schématu.
1.2. Návrh plošného spoje

Návrh plošného spoje spočívá v tvorbě pouzder součástek, nastavení technologických podmínek, nactení netlistu, definici obrysu desky, rozmístění součástek, návrhu vedení spoju, finálních úpravách, kontrole návrhových pravidel a generování technologických dat. V každé fázi návrhu je treba mít na zreteli tři hlediska:

2. Osazování a pájení – způsob osazování navrhované desky ovlivňuje požadavky na definici pouzder součástek a jejich rozložení na desce plošného spoje. Například při osazování do pájecí pasty a následném pájení pomocí pretavení (reflow) musí pouzdra součástek obsahovat vrstvu, kde bude definována ploška pro nanášení pájecí pasty.

3. Elektrická funkce – hledisko elektrické funkce je velmi obsáhlé. Na základě znalosti funkce obvodu navrhovaného plošného spoje musí být provedeno správné rozložení součástek, při návrhu vedení spoju musí být respektována pravidla maximálního proudového a napetového zatížení spojů, otázky zemenečného zařazení spojů, zpoždění při šíření signálu, způsobu zemenečního zařazení...

1.2.1. Princip vrstev a jejich využití

Program pro návrh plošných spojů umožňuje pracovat v mnoha vrstvách, určených pro různé účely (například vrstvy spojů, nepájivých masek, servisního potisku atd.). Do vrstev se poté vkládají různé typy objektu (pájecí plošky, spoje, texty, obrysy součástek, obrysy plošného spoje…). Následuje výčet nejčastěji používaných vrstev, jejich názvů, prípadně zkratek:

- **Vedení spoju** (Top, Bottom, GND, PWR, Inner 1…(TOP, BOT…)
- **Nepájivé masky** (Solder Mask Top, Bottom (SMTop, SMBot))
- **Pájecí paste** (Solder Paste Top, Bottom (SPTop, SPBot))
- **Obrysy součástky** (Place Outline)
- **Servisní potisk** (Silkscreen Top, Bottom (SSTop, SSBot))
- **Osazovací výkres** (Assembly Top, Bottom (ASTop, ASBot))
- **Vrtací výkres** (Drill Drawing (DRD))
- **Data pro NC vrtacku** (Drill (NCD nebo DRL))

1.2.2. Knihovny pouzder

Pred nactením netlistu je nutné zkontrolovat, popřípadě nedefinovat pouzdra pro všechny použité součástky. Je nutné dát pozor především na tato pravidla:

- **Trídy presnosti** – je nutné dodržovat základní parametry tridi presnosti. Na základě znalosti pouzder součástek definujeme tridy presnosti.
- **Prumery vrtáku nebo konečných otvoru** – v definicích pájecích plošek je nutné používat správné prumery.
- **Správné prumery otvoru a rady používaných hodnot** – v definicích pájecích plošek je nutné používat správné prumery.

- **Správné prumery otvoru a rady používaných hodnot** – v definicích pájecích plošek je nutné používat správné prumery.
omezený pocet zásobníku (zpravidla 9) a použití vetšího poctu prumeru zpomalí a prodraží výrobu.

- **Obrysy pouzdra** – tím jsou míneny obrysy pouzdra za účelem správného rozmístění součástek (v OrCADu nazývaná Place Outline). Tyto obrysy musí respektovat nejen vlastní rozmery součástek, ale i další aspekty, související se způsobem osazování, pájení a testování. U součástek, které vyžadují chlazení, se nesmí zapomenout na obrysy chladicí vcetně způsobu jeho uchycení na plošném spoji.

- **Servisní potisk** – jedná se o motiv, který bude vytisknuto na plošném spoji (zpravidla metodou sítotisku). Nesmí zasahovat do pájecích plošek a šířka car nesmí být těsně nez 8 milu (0,2 mm).

- **Pájecí pasta** – v případě osazování součástek do pájecí pasty a následném pájení pomocí pretavení je nutné definovat ve speciální vrstve plošky pro nanášení pájecí pasty. Pájecí pasta se totiž na plošný spoj nanaší protlacením pájecí pasty přes planžety metodou sítotisku. Vstupními podklady pro výrobu planžet jsou filmy s obrazem pájecích plošek.

- **Nulová souradnice součástky** – při perspektivě strojního osazování je nutné na součástce označit referenční bod, tedy místo, které reprezentuje souradnice součástky na plošném spoji. Za tento bod bude součástka chycena vakuovou pipetou osazovací rukou automatu.

Obr. 1.2: Pouzdro součástky.

1.2.3. Nacitání netlistu

Při nacítání netlistu dochází k postupnému vyvolávání pouzder součástek z knihoven, umístování na pracovní plochu a nadefinování propojení jejich pinu. Soucasne se prenášejí všechny průslušné položky a nastavení vlastností součástek a uzlu. Jinak nacitání netlistu spadá spíše do kategorie „klikání myší“, a proto nebude jsem tento fázi návrhu dále rozebírat.

1.2.4. Nastavení technologických podmínek

Správné nastavení programu je velmi důležitým předpokladem pro celý další postup návrhu plošného spoje. Konkrétní způsob nastavení závisí na použitém návrhovém systému. Nechci zde zmiňovat nastavení barev zobrazení na monitoru, tvar kurzu, strategie autorouteru a podobně. Z metodického hlediska návrhu plošného spoje je nutné provést nastavení nebo kontrolu predevším těchto položek:

- **Rastr** – jedná se o nastavení kvantování rozmerových jednotek pro různé typy operací při návrhu plošného spoje. Rozlišujeme například rastre pro rozmístování součástek, pro vedení spoju atd. Samozřejmě návrhové programy umožňují pracovat takzvané „bezeastrove“, což zpravidla šetří místě na plošném spoji. Doporučuji ovšem tuto eventualitu ponechat jako zálohu pro rešení konkrétních jinak nevyřešitelných situací na plošném spoji a vetšinu casu pokud možno pracovat se zapnutým rastrem. Pri jeho nastavování je nutné sledovat dva základní aspekty:
1. **Použitá trída presnosti** z hlediska šírky spoju a izolacních vzdáleností. Z ekonomických důvodů je žádoucí pokládat spoje s co možná nejvatřší hustotou na hranici trídy presnosti.

2. **Rastr pro rozmístění součástek**, respektive rastr umístění jejich pájecích plošek. Při manuálním návrhu spoju je velmi nepraktické a neefektivní, jestliže nebude rastr pro vedení spoju delitelem rastru rozmístění pájecích plošek. V soucasné dobe se zpravidla používá rastr 25 milu (0,635 mm).

Obr.1.3: Rastr pro 4. a 5. trídu presnosti (rozmyry v milech).

- **Vrstvy** – jedná se predevším o určení počtu elektrických vrstev a určení jejich významu. Rozlišujeme vrstvy pro **vedení signálových spojů** (*Routing Layer*) a vrstvy s rozlévanou medí jako napájecí a zemní zóny (*Plane Layer*).

- **Izolacní vzdálenosti** – u uzlu, kterým nebyla nastavena izolacní vzdálenost již ve schématu, je tuto nutné stanovit nyní. Přitom se musejí respektovat jak minimální vzdálenosti vyplývající z použité trídy presnosti, tak i vzdálenosti vyplývající z elektrické pevnosti.

- **Šírka spoju** – nastavení šírek spoju je opět možné již ve schématu, nicméně zpravidla se tak cíní pouze u kritických spojů a u ostatních bežných spojů se šírka nastavuje práve v rámci vlastního návrhu plošného spoje. Přitom je nutné respektovat hledisko použité trídy presnosti a zároveň podmínky maximální povolené proudové hustoty.

- **Další nastavení uzlu** – uzlum mužeme priradit nekteré další vlastnosti, jako například, barvu spojových vektorů, což je nutné nastavit jejich parametry v souladu s použitou trídou presnosti, jmenovitě prumer pruchozího otvoru a velikost plošky.

- **Prokovy** – jsou to vodivé pruchody z jedné spojové vrstvy do druhé. Je nutné nastavit jejich parametry v souladu s použitou trídou presnosti, jmenovitě prumer pruchozího otvoru a velikost plošky.

Obr. 1.4: Definice termální plošky.

- **Termální plošky** – pájecí plošky, které mají být pripojené k medené ploše (rozlité zóně), se pripojují pomocí takzvaných termálních plošek, které zabranují nadmernému odvodu tepla.
pri pájení. U termálních plošek se definuje šířka a délka jejich paprsku (obrázek 1.4). Šířka by měla korespondovat s minimální šírkou spoje a délka s izolacní vzdáleností dle použité trídy presnosti (tabulka 2.2).

1.2.5. Obrysy plošného spoje, výrezy a montážní otvory

Pred rozmístováním součástek je nutné obecně receno vymezeť plochu, na které se smí vyskytovat součástky a spoje, to znamená stanovit obrysy plošného spoje, výrezy, prípadne do plošného spoje umístit montážní otvory. Takto definovaný obrys ještě neznamená, že bude použitý jako údaj pro výrobce pro oríznutí finálního výrobku. Pri finálních úpravách je samozřejmě možné vytvořit speciální orezové znacky dle požadavku výrobce nebo vygenerovat obrys ve speciální vrstvě za účelem jejich zpracování pro automatické frézování.

Pri umístování montážních otvorů se nesmí zapomenout na vymezení prostoru pro hlavicku šroubku, podložku ci matrice. Je-li deska určena k zasunutí do drážek, musíme při rozmístování součástek zohlednit i hloubku tehto drážek.

1.2.6. Rozmístění součástek

Obecně je možné říci, že na kvalitě a způsobu rozmístění součástek závisí správná funkce navrhovaného obvodu. Pri návrhu složitých desek se rozmístování součástek zpravidla venuje podstatné více casu a pozornosti než návrhu vedení spoje. Správné rozmístění součástek totiž usnadňuje návrh spoje.

1.2.7. Vedení spoje

- **Rozložení spoje v jednotlivých vrstvách** – u vícevrstvých desek plošných spojů jsou vrstvy sousedící s rozlitou medí vhodnejší pro návrh kritických spojů...
- **Napájení a zemnění** – často porušovanými principy jsou nevhodné způsoby návrhu spoju usmernovací, blokovacích kondenzátorů, spínaných zdrojů a rozvod napájení a zemí vubec.
- **Délka vodiců a jejich vzájemná vzdálenost** – s délkou spoje rostou jejich parazitní vlastnosti (odpor, indukce, kapacita, impedancia), které mají vliv na rychlost šíření elektrického signálu nebo způsobují odrazy na vedení. Negativní vliv na funkci obvodu mají též preslechy.
- **Plochy proudových smycí** – zbytečně velká plocha proudové smycí má vliv na vyzarování elektromagnetického pole z plošného spoje a zároveň na jeho odolnost proti rušivým vlivům.
- **Rozlévaná med** – „nalití“ medi na místa, kde nevedou spoje a její pripojení ke společnému vodiči (zpravidla zemi) snižuje impedanci, vliv preslechu, vyzarování…

- - -
1.2.8. Finální úpravy

Propojením posledního spoje návrh nekončí. Nastává fáze přípravy pro generování výrobních podkladu, tedy takzvané finální úpravy. Mezi finální úpravy tedy patří například příprava orámování konzolí nebo dat pro frézování a drážkování, umístění sesazovacích znacíků, kótování, popisy desky plošného spoje, ošetření zlacených konektorů...

Obsah finálních úprav závisí plně na způsobu výroby plošného spoje a na požadavcích výrobce. Jiné požadavky bude mít výrobce jednostranné desky a jiné výrobce vícevrstvé desky s prokouvněním, nepájivou maskou a zlacenými konektorami.

1.2.8.1. Podklady pro formátování na výsledný rozmer

Zpusobu formátování desky plošného spoje na výsledný rozmer je nekolik. Mezi nejpoužívanější patří orámování na padacích nužkách, frézování a drážkování. Pro tyto tri způsoby je nutné dodat následující podklady:

- **Ostrih na padacích nužkách** – vetšinou postací prosté orámování plošného spoje, pri vyšších požadavcích na presnost je dobré v rozích desky umístit orezové znacky, pravidle i vrtací úpravy.

- **Frézování** – pri malých nárocích na presnost je možné plošný spoj frézovat podle prostého orámování. Optimální ovšem je dodat výrobci obrysy ve speciální vrstve jako samostatný datový soubor v dohodnutém formátu. Z těchto dat je možné vygenerovat data pro NC frézování.

- **Drážkování** – platí stejné pravidlo jako pro frézování.

V případě požadavku velmi presného oríznutí nebo frézování je nutné určit, zda má byt tato operace provedena na stred, vnejší okraj nebo vnitřní okraj obrysové káry nebo ostřihové znacky. Pri frézování je vhodné dodat navíc okótovaný výkres obrysu i všech výrezů ve speciální vrstve.

1.2.8.2. Sesazovací znacky

Pomocí sesazovacích znacíků se přikeládají jednotlivé filmy na predem vyvrtanou desku plošného spoje pro jeho výrobu. Proto musí být umístěny ve všech vrstvách, urcených pro výrobu. Pri výrobe dvoustranných desek je nutné, aby byly v两句 vrstvách Top, Bottom, Solder Mask Top, Solder Mask Bottom, Silk Screen Top a Silk Screen Bottom (názvy dle kapitoly Princip vrstev a jejich využití).

Je ovšem otázka, zda vubec sesazovací znacky v návrhu umístit, a jestliže ano, tak jaké. Platí pravidlo, že budeme-li výrobcí dodávat sami průmo filmy, je nutné tyto znacky navrnout, a budeme-li výrobcí dodávat data ve elektronické podobě, udelá si je výrobce vetšinou sám.

Pro vetšinu výrobce postací jako sesazovací znacky jednoduchý znak, který má ve svém středu vrtací otvor o prumeru 28 až 40 milu (0,7 až 1 mm). Krčí je nutné v místě otvoru proruší tak, aby nebyl zakrytý cáravou. Takovou znacku je možné vytvořit jako pouzdro.
součástky do knihovny. Sesazovací znacky se zpravidla umístují v něm plošného spoje ve třech rozích desky tak, aby navzájem tvorily pravý úhel. Šířka cáry kríže by měla být 8 až 12 milu.

Obr.1.6: Príklad sesazovacích znacek a jejich umístění.

Pri návrhu vícevrstvých spoju (4 a více) musí být filmy s motivy jednotlivých vrstev medi navíc opatřeny speciálními znakami pro správné sesazení dílcích plánu v laminátoru a pro usazení laminované desky do souradnicové vrtacky. Prípravu pro výrobu vícevrstvých desek je ovšem vhodné ponechat na samotném výrobci.

Navrhujeme-li desku pro automatické osazování soucástek, mely by se dvou protilehlých rozích plošného spoje ve vrstve medi existovat dva námerné terce pro optické zamerení presné polohy desky v osazovacím automatě. Zpravidla se používají terce o průměru 80 milu. Prápradně jiné umístění tečku tercuj a jejich tvar je vhodné konzultovat s firmou, která bude plošný spoj osazovat.

1.2.8.3. Popisy desky plošného spoje

Popisy se na plošném spoji umístují z nekolika duvodu a podle toho rozlišujeme jejich funkci. Je průtorn na výrobci plošných spojů, aby nám stanovil, jaké popisy ve kterých vrstvách požaduje pro výrobu, jakou velikost a šířku cáry písma (zpravidla ne menší než 40 milu a ne tencí cárou než 8 milu) a dále ve kterých vrstvách je nutné text umístit zrcadlení. Zrcadlení prímo souvisí s konkrétním technologickým postupem výroby plošného spoje. Vetšinou je nutné zrcadлит všechny texty umístěné ve spodních vrstvách (obrázek 1.7). Následuje výcet nejdůležitějších typu textu a popisu na plošním spoji:

Obr.1.7: Príklad umístění popisu na ctyřvrstvém plošním spoji (pro výrobní postup podle obrázku 2.4).

• Název desky plošného spoje – název je vhodné umístit ve všech vrstvách, príčemž alespoň v jedné vrstven pokud možno uvnitr desky (aby zůstal na desce i po ostření či frézování). Z duvodu jednoznačnosti při výrobe je vhodné, aby byl název shodný s názvem schématu, souboru plošného spoje, souboru dat pro souradnicové vrtání a souboru výrobních predloh (motivu jednotlivých vrstev).
• Oznacení jednotlivých vrstev – jednotlivé vrstvy je nutné naprosto jednoznačně oznacit tak, aby bylo zjevné, o kterou vrstvu se jedná a nemohlo tak při výrobe dojít k jejich zámene. Neň pritom nutné, aby oznacení vrstve bylo uvnitr desky. U vícevrstvých desek se
navíc pomocí císel ve zvláštním rámecku uvádí sled razení jednotlivých vrstev medi (toto císlování se ve spodních vrstvách nezrcadlí).

- **Servisní potisk a osazovací výkres** – Pro servisní potisk a osazovací výkres se užívá obrysu součástek a popisu, vytvořených při definici pouzder součástek v knihovnách a zpravidla není nutné je doplnovat dalšími údaji. Pro přehlednost je však vhodné provést rotace a posuny textu tak, aby byla jednoznačná dána jejích náležitost k součástkám. Pritom je nutné dbát na to, aby žádný text servisního potisku neprekryval pájecí plošky, případné aby se nenacházel pod součástkami (po osazení by tento text nebyl vidět).

1.2.8.4. Zlacené konektory
Nanáší-li se na medené plošky galvanicky nikl a zlato, je nutné všechny plošky, které se mají poniklovat a pozlatit, vzájemně vodive propojit a toto propojení vyvést k protějšímu okraji desky plošného spoje. Propojení se provádí v obrysu plošného spoje a záverecným oríznutím desky se potom jejich zkratování odstraní (obrázek 1.8).

![Obr.1.8: Propojení plošek zlaceného konektoru.](image)

1.2.9. Kontrola návrhových pravidel
Po dokoncení návrhu, finálních úpravách a před generováním technologických dat pro výrobu a osazování je vhodné provést kontrolu návrhových pravidel plošného spoje. Spočívá v overení dodržení predem nastavených podmínek, především izolacních vzdáleností spoju, prokovu a pájecích plošek, šírky spoju. Je možné kontrolovat též pravidla rozmístění součástek. Výčet možností kontroly závisí na použitém návrhovém programu.

1.2.10. Generování technologických dat
Technologická data jsou podklady pro výrobu plošného spoje, případné další data pro jeho osazení. Formát dat plní závisí na výrobním postupu a možnostech výrobců. Před vlastním vytvářením technologických dat je nutné provést nastavení, které vrstvy, s jakými parametry a v jakém formátu budou vygenerovány.

V závislosti na způsobu zpracování dat a kvalite výroby požaduje výrobce motivy bud v elektronické podobě určitého formátu nebo jako predlohy (kliše) v určité kvalitě:

- **Papír, fólie** – postaci pro amatérskou výrobu jednostranných vzorků (rozmerová nestálost nosného materiálu).
- **Filmy z osvětky** – vhodné pro amatérskou výrobu dvoustranných spoju (pozor na rozmerovou chybu – nestálost filmu zhruba 0,1%).
- **Filmy z fotoplotru** – rozmerové stálá cirá podložka s motivem, který má velmi dobré krytí. Úrečeno pro profesionální výrobu plošných spoju.

1.2.10.1. Podklady pro výrobu vícevrstvých spoje
Pro výrobu ctyrvrstvitého plošného spoje snepájivou maskou a servisním potiskem je nutné vygenerovat následující data (zkratky odpovídají popisem z obrázku 1.7):
Motivy jednotlivých vrstev vodivých spojů – strana součástek (Top), strana spoju (Bot) a obe vnitrní vrstvy (GND a PWR).

Motivy pro nepájivé masky ze strany součástek a strany spoju (SMTTop a SMBot).

Predlohy pro servisní potisk ze strany součástek a strany spoju (SSTop a SSBot).

Data pro souradnicové vrtání.

Prípadná data pro frézování.

Tabulka 1.1: Príklad datových souboru Extended Gerber 3.4 a Excellon 2.4 (v palcích).

<table>
<thead>
<tr>
<th>Extended Gerber 3.4</th>
<th>Excellon 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G04 Aperture Definitions***</td>
<td>INCH,TZ</td>
</tr>
<tr>
<td>"%!AMTHERMAL24* 1.0,0,0.* 1.0,0,74,0.* 21.0,0,104.0,0.015,0.0,45.0.* 21.0,0,104.0,0.015,0.13,0.0%</td>
<td>TC0.0300</td>
</tr>
<tr>
<td>%AD01C,0.0590%</td>
<td>T2C0.0310</td>
</tr>
<tr>
<td>%AD01C,0.0520%</td>
<td>T3C0.0400</td>
</tr>
<tr>
<td>%AD01R,0.0520X0.0520%</td>
<td>T4C0.0450</td>
</tr>
<tr>
<td>%AD01R,0.0580%</td>
<td>T5C0.1400</td>
</tr>
<tr>
<td>%ADD10C,0.0550%</td>
<td>G05</td>
</tr>
<tr>
<td>%ADD11C,0.0520%</td>
<td>T1</td>
</tr>
<tr>
<td>%ADD12R,0.0520X0.0520%</td>
<td>X220000Y131000</td>
</tr>
<tr>
<td>%ADD13C,0.0580%</td>
<td>X220000Y152500</td>
</tr>
<tr>
<td>%ADD14THERMAL24%</td>
<td>X124000Y176500</td>
</tr>
<tr>
<td>G04 Plot Data ***</td>
<td>X135000Y192500</td>
</tr>
<tr>
<td>GS4D10*</td>
<td>T2</td>
</tr>
<tr>
<td>GS4D10*</td>
<td>X182000Y145000</td>
</tr>
<tr>
<td>GS4D10*</td>
<td>X212000Y155000</td>
</tr>
<tr>
<td>GO1X002750Y0014500D02*</td>
<td>X212000Y145000</td>
</tr>
<tr>
<td>Y0012700D01*</td>
<td>T3</td>
</tr>
<tr>
<td>X0032750Y0010500D02*</td>
<td>X089000Y103500</td>
</tr>
<tr>
<td>X0014950D01*</td>
<td>X258000Y266000</td>
</tr>
<tr>
<td>GS4D11*</td>
<td>X089000Y103500</td>
</tr>
<tr>
<td>GS4D11*</td>
<td>Y0013500D01*</td>
</tr>
<tr>
<td>GS4D12*</td>
<td>X152500Y17600</td>
</tr>
<tr>
<td>GO1X0018348Y0033622D02*</td>
<td>X152500Y186000</td>
</tr>
<tr>
<td>Y00189000Y0033622D02*</td>
<td>X152500Y196000</td>
</tr>
<tr>
<td>X00198175D02*</td>
<td>T4</td>
</tr>
<tr>
<td>X00198175D02*</td>
<td>X152500Y196000</td>
</tr>
<tr>
<td>X00189000Y0033622D02*</td>
<td>X152500Y196000</td>
</tr>
<tr>
<td>Y00198175D02*</td>
<td>T5</td>
</tr>
<tr>
<td>Y003371D01*</td>
<td>X182000Y12000</td>
</tr>
<tr>
<td>X0018854Y0033622D01*</td>
<td>X220000Y12000</td>
</tr>
<tr>
<td>X0019761D02*</td>
<td>X124500Y176600</td>
</tr>
<tr>
<td>GS4D13*</td>
<td>X135500Y192500</td>
</tr>
<tr>
<td>Y000250D03*</td>
<td>T0</td>
</tr>
<tr>
<td>GS4D14*</td>
<td>X135500Y192500</td>
</tr>
<tr>
<td>X0019750D03*</td>
<td>M30</td>
</tr>
<tr>
<td>M02*</td>
<td>M02*</td>
</tr>
</tbody>
</table>

Jednotlivé příkazy formátu Gerber například znamenají: ADD10C.0550* = definice kruhové clonky D10 o průměru 0.055, D01 = otevřít uzáverku, D02 = zavřít uzáverku, D03 = blíknout světlo, G54D12 = vybrat clonku D12, X0018348Y0033622D02* = presunout se bez světla do polohy 1,8348(x), 3,3622(y), Y0034155D01* = presunout do polohy 1,8348(x), 3,4155(y) a přitom svítit, M02* = konec souboru atd…

Příkazy formátu Excellon, použité v tabulce znamenají: G05 = vrtání obrazce, T1 = povel k výměně vrtáku, M30 = nastavení registru se STOP–kódem (=konec vrtání)…

Filmy musí být vyrobeny tak, aby byl motiv v průměru kontaktu s fotocitlivým rezistem na plošném spoji. V případě kusové výroby (zhruba do 10 kusu) se filmy používají průměrů zrcadelního vztahu se zrcadlením vrstev, pouze se zrcadlením textu ve spodních vrstvách (vodivé spoje, nepájivá maska a servisní potisk ze strany spoju). Príklad takto vygenerovaných dat je na obrázku 1.9.
Základním pravidlem u motivu vodivých spojů pro výrobu plošného spoje semiaditivní metodou je, že pájecí plošky musí být vygenerovány bez vrtacích otvorů, tedy zaslepené.

Obr.1.9: Príklad motivu, potřebných pro výrobu čtyřvrstvého plošného spoje s nepájivou maskou a servisním potiskem (pro výrobní postup podle obrázku 2.4).

Data pro souradnicové vrtání se dodávají v elektronické podobě ve výrobcem stanoveném formátu (zpravidla Excellon). Predpokladem pro úspěšné vrtání je datový soubor správného formátu. V hlavici by mel obsahovat seznam použitých nástrojů a jejich prumery. Dále následují X-Y souradnice vrtání. Príklad souboru je v tabulce 1.1. Výčet použitých nástrojů by nemel obsahovat příliš mnoho prumery. Bude-li použito více vrtáků, než je pocet zásobníku souradnicové vrtacky, bude nutné v prubehu vrtání zamenit nekteré vrtáky v zásobníku, což samozřejmě prodraží výrobu. Nemelo by se tedy stát, že v definici otvoru (tabulka 1.1) budou existovat nástroje s rozdílem prumery menším, než je škála prumery vrtáku (0,1 až 0,05 mm). Velmi důležité je potom výrobci v objednávce sdělit, zda jsou v seznamu prumery uvedeny **prumery vrtáku** nebo **konečné prumery otvoru**!!! Vhodnější je zadávat koncové prumery...
otvoru a nechat na výrobci, kolik si musí pripocítat na jejich prumeru vzhledem k technologii výroby, kterou používá.

1.2.10.2. Podklady pro osazování

Pro osazování součástek na plošný spoj je nutné připravit náležitou dokumentaci, případně vygenerovat datové soubory v určitém formátu. Pri rучním osazování postáčí připravit a vytisknout schéma, osazovací výkres, případně vygenerovat seznam použitých součástek (Bill of Materials). Data pro osazovací výkres jsou v OrCADu definována v samostatných vrstvách Assembly Top (ASYTop) a Assembly Bottom (ASYBot). Obsahují obrazy a popisy součástek, případně jejich pájecí plošky pro snadnější orientaci.

V případe strojního osazování na osazovacím automatu bývá potřeba připravit podklady ve vhodném formátu. V závislosti na použitém způsobu osazování a pájení je potřeba připravit tato data:

- **Osazování do pájecí pasty snásledným pretavením** – pri pájení pomocí pretavení (reflow) je nutné na pájecí plošky před osazováním součástek nanést pájecí pastu. Tato se nanáší prostřednictvím sítotisku. Proto je nutné vygenerovat data pro sítotisk, na kterých budou obrazy pájecích plošek (formát Gerber). Z nich se potom fotocestou a leptáním vyrobí kovové planžety pro sítotisk. Data pro tyto motivy jsou ve vrstvách Solder Paste Top (SPTop) a Solder Paste Bottom (SPBot).

- **Osazování do lepidla a pájení na vlne** – pri pájení na vlne musí být součástky na plošný spoj předem prilepeny. Lepidlo se nanáší metodou sítotisku nebo dispenzerem (dávkovacím). Pro sítotisk je nutné vygenerovat data pro sítotisk. Pro souradnicové dávkování je nutné vytvořit datový soubor se souradnicemi míst, kam má být lepidlo nadávkováno (je možno odvodit od nulové souradnice součástky).

- **Data pro automatické osazování** – pri strojním osazování automat podle zadaných dat pokládá součástky ze svých zásobníku na správná místa na plošném spoji. Data je možné zadat automatu v podstatě dvojím způsobem. Bud se automat „ucí“ při osazování první desky podle osazovacího výkresu, nebo mu přímo dodáme data ve správném formátu. Pri první variantě staci vytisknout osazovací výkres, podle kterého obsluha provede osazení první desky. Pro druhou variantu je nutné vygenerovat data z návrhového programu pro plošné spoje a tato dale upravit do vhodného formátu.
2. Technologie výroby plošných spojů

V současné době se používají tri druhy výrobních postupu: Subtraktivní, aditivní a semiadiitivní. Jak vyplývá z názvu, subtraktivní postup spočívá vodstranování prebytečné medi (leptání), aditivní postup znamená nanašení vodivých cest a semiadiitivní postup je kombinací obou predchozích metod, tedy zčásti nanašení cest, zčásti leptání. Subtraktivní metodu známe téměř všichni, kterí jsme se kdy pokusili zh outovit podomácku plošný spoj. Jedná se o leptání základního materiálu s medenou fólií, tedy o standardní postup, který se vyznačuje především nízkou výrobní cenou. V technologií dvoustranných a vícevrstvých plošných spojů s prokovenými otvory se ovšem v současné době používá semiadiitivní metoda, která je vhodná především pro prototyp povou a malosériovou výrobu. Práve tuto metodu si blíže popíšeme.

2.1. Semiadiitivní metoda výroby plošných spojů

Touto metodou je možné vyrábet jednostranné, dvoustranné i vícevrstvé desky plošných spojů. V České republice semiadiitivní metodu používá zhruba 15 výrobců plošných spojů. Základní postup si ukážeme na dvoustranné desce s prokovenými otvory, nepájivou maskou a servisním potiskem. Toto skriptum si neklade za cíl seznámit čtenáře podrobně a do detailu s technologickými postupy výroby plošných spojů. V následujících kapitolách bude popsán výrobní postup do úrovne, kterou by měl znát každý návrhár plošných spojů.

2.1.1. Výroba dvoustranných desek plošných spojů

Následuje vykreslení filmových matric, prípadne vytvorení výrobních kopií. Filmové matrice se vykreslí na fotoplotru. Jedná se o zarážení, které pomoci laseru vykreslí požadovaný motiv na fotocitlivou fólii, která se vyznačuje vysokou rozmerovou stálostí (0,1 až 0,3 mm na 1 metr délky pri zmene teploty o 25 K). Tlouštka filmu je 0,18 mm. Motiv je vykreslován s presností 1–10µm. Výrobní kopie se potom vytvářejí z matric osvitem na fotocitlivý materiál (diazokopie).

V tomto okamžiku je vše připraveno k zapocetí prvních prací na výrobe plošného spoje. Prvním krokem je formátování základního materiálu. Základní materiál pro semiadiitivní postup je nosná deska, plátovaná z obou stran vodivou fólií medi. Formátování spočívá
v nastržení plátované desky na určitý rozmer, vyvrtání montážních otvorů pro uchycení desky při nekterých výrobních operacích a obroušení hran po ostrihu.

- **Nosná deska** muže být vytvorená ztvrzeného papíru, teflonu, kaptonu, polyimidu, invaru na hliníkové desce atd. Mezi nejrozšířenější materiály ovšem patří skelný laminát plněný epoxidovou pryskyřicí. Tento materiál se označuje FR4. Do objednávkového listu je nutné zadat tloušťku tohoto materiálu. Standardně se používá tloušťka 1,5 mm, k dispozici jsou materiály o tloušťkách v rozsahu 0,2 až 3,2 mm.

- **Medená fólie** muže mít tloušťku 18, 35, 70 nebo 9 µm. Ve výjimečných případech lze použít i tloušťku 5 nebo 9 µm. Standardně se používá elektrolytická vyloučená medená fólie o cistote 99,8% o tloušťce 18 µm. Na nosnou desku se plánuje vysokým tlakem a teplotou.

<table>
<thead>
<tr>
<th>Areál Běchovice</th>
<th>Tel 02/6277642</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 11 Praha 9</td>
<td>Fax 02/6271254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jméno zákazníka</th>
<th>název DPS</th>
<th>zakázka č.</th>
<th>Rozměr DPS</th>
<th>Rozměr panelu</th>
<th>Počet kusů</th>
<th>Počet kusů v panelu</th>
<th>Materiál</th>
<th>FR4 UMATEX</th>
<th>FR4 ISOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl. materiálu</td>
<td>1,0</td>
<td>1,2</td>
<td>1,5</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl. médi</td>
<td>18/18</td>
<td>35/35</td>
<td>70/70</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povrch</td>
<td>cín</td>
<td>med+HAL</td>
<td>cín+HAL</td>
<td>méd+lak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maska</td>
<td>sitotisk fotocitlivá</td>
<td>sitotisk - barva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potisk</td>
<td>strana součástek</td>
<td>strana spojů</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barva potisků</td>
<td>bílá</td>
<td>žlutá</td>
<td>černá</td>
<td>............</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrtání</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opracování</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doplnkové technologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Předané podklady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Přezvět</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrácení podkladů</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum objednání</td>
<td></td>
<td>Datum dokončení zakázky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel. spojení</td>
<td></td>
<td>Podpis zákazníka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vrtáku se používá vysokoobrátkové vreteno (20.000 až 150.000 otáček /min.) s rízeným vnorením a odsáváním pilin. Optimální rychlost vnorení je rovna polomeru vrtáku za jednu jeho otáčku. Vreteno umí samostatne menit vrtáky připravené v zásobních. Vrtáky bývají k dispozici ve škále průměru od 0,4 mm do 6,3 mm po 0,05 až 0,1 mm. Otvory vetších průměru se frézují. Pocet poloh v zásobníku souradnicové vrtacky je zpravidla 9.

U vyvrtané desky je nutné kartáčováním zacítit otrepy der a dále z povrchu medi odstranit piliny a mastnoty. Deska se tak připravuje prokovení otvoru, které je bezesporu nejchoulostivejší operací výrobního postupu.

Obr.2.2: Znázornení semiaditivního postupu výroby dvoustranných plošných spojů.
Prokovení otvoru se v současné době provádí metodou prímého prokovu. Skládá se z nekolika kroků. Nejdříve je potřeba vrtané otvory chemicky vycistit a zároveň narušit povrch základního materiálu, čímž se obnaží skelná výztuha laminátu. Do takto upraveného otvoru se v katalyzací lázní elektrostaticky nanese 0,1 µm vrstva palladia (velikost zrn palladia v roztoku je 0,01 µm). Tím se vodíve propojí obe strany plošného spoje ve všech vyvrtaných otvorech. Nakonec se galvanicky nanese 6 až 8 µm medi – obrázek 2.2 b).

Dalším krokem je laminace fotorezistu, osvit motivu a vyvolání negativního motivu (obrázky 2.2 c) a d). Jako fotorezist se používá 38 µm tlustá fólie fotocitlivého polymeru, která se v laminátoru naválcuje na prokovenou desku. Při velkosériové výrobe se ovšem používají tekté rezisty. Na takto připravenou desku se priloží film s motivem spoju a provede se osvit pomocí 5kW výbojky. Tato operace je citlivá na cistotu prostředí (částice 10 µm se již jeví jako nečistota). Proto se musí provádět v čistých prostorách, které nesmí obsahovat více než 200.000 částic v m³. Není třeba zdůraznovat, že film se musí na vyvrtanou a prokovenou desku priložit s maximální presností. Pro presné usazení slouží soutiskové známky, které jsou umístěny v rozech plošného spoje.

Dalším krokem je leptuvzdorné zésílení medi a nanese se leptuvzdorný rezist (obrázky 2.2 e)). Tloušťka galvanického zésílení medi je typicky 20 µm, přičemž pomer mezi tloušťkou zésílení a povrchu desky a v prokovu je 10:9 až 10:8. Je možné leptuvzdorný rezist se použít i ke zvětšení žárovek. Galvanické zésílení medi se totiž provádí pouze na otevřených místech, tedy v místech spoju, pájecích plošek a prokovu. V tomto okamžiku se vytváří samozřejmě podleptání a tedy cím menší tloušťku leptání dosáhneme. Pozorní čtenáři si jistě všimli, že na obrázku 2.2 není ono podleptání znázorněno.

Výsledná tloušťka spoje je vyšší než odleptávaná hloubka!!! Galvanické zésílení medi se totiž provádí pouze na otevřených místech, tedy v místech spoju, pájecích plošek a prokovu. V tomto okamžiku se vytváří podleptání a tedy cím menší tloušťku leptání dosáhneme. Pozorní čtenáři si jistě všimli, že na obrázku 2.2 není ono podleptání znázorněno. Reálný profil leptaného spoje je na obrázku 2.3.

Obr.2.3: Reálný profil leptaného spoje.

Výsledek leptání a následného odstranění cínového rezistu je vidět na obrázku 2.2 g). V tomto okamžiku je deska připravena pro testování. Existují dva druhy testerů – optické a elektrické. Optický tester scanuje povrch desky a zjišťuje odchyly testované desky od referenčních dat. Elektrický testér merí odpor mezi zadanými místy na desce. Na otestovanou a očištěnou desku se nanese fotocitlivá nesáčivá maska, priloží se film s odpovídajícími motivy a provede se osvit (obrázky 2.2 h)). Neexponovaná místa jsou vymyta ve vyvolávacím zarízení a maska je tepelně vytvarována. Úkolem nepájivé masky je chránit medené spoje před vnitřními vlivy a zakrýt místa, na která nemá být nanesena pájka. Zároveň slouží jako ochrana motivu před nežádoucím zkratováním.

Po vytvoření nepájivé masky následuje žárové nanesení SnPb pájky. Uvedená operace se též nazývá HAL (Hot Air Levelling). Provádí se ponorením desky do tavidla a poté na ctyři sekundy do vany s roztavenou pájkou. Pri vynorování se odfouknou prebytky pájky horkým vzduchem (vzduchovým nožem). Síla nanesené vrstvy se pohybuje okolo 10 µm. Pájka
zarucuje snadnou pájitelnost a klimatickou odolnost pájecích plošek. Výsledek je zrejmý z obrázku 2.2 i). Výroba bežných dvoustranných spojů touto operací končí. Následovalo by pouze formátování na výsledný rozmer.

Casto chceme z duvodu prehlednosti jednotlivé součástky na plošním spoji označit takzvaným servisním potiskem. Jedná se o popis zpravidla bílou barvou, která se na plošný spoj nanáší pomocí sfitotisku. Při návrhu plošných spojů je nutné dát pozor na to, aby texty nebyly vytvorený příliš tenkými cary. Metoda sfitotisku v dané technologii zpravidla neumí vytrknout cary tencí než 8 milu (0,2 mm). Pro tisky popisu se používají dvousložkové epoxidové barvy, které se po nanesení tepelně vytvrzují. Při návrhu plošného spoje je důležité zajistit, aby žádné objekty z vrstev servisního potisku nezasahovaly do pájecích plošek.

Poslední výrobní operací je formátování na výsledný rozmer. Používají se tri zpusoby:

- **Ostrih na padácích nužkách** – jedná se o nejjednodušší, nejrychlejší ale zároveň málo presnou operaci (±0,25 mm). Na hranách desky zůstávají otrepys skelného laminátu a proto je vhodné jejich zabroušení na rovinné brusce. Ostrih není vhodný u desek, které mají být zasunuty do presných drážek (presnost operace) a dále u desek, které pricházejí do styku s lidskou pokožkou (otrepy laminátu). Ostrih se provádí podle speciálních ostrohových znacek nebo méne presne podle orámování obrysu plošného spoje (obrázek 1.5). Vzhledem k výsledným tolerancím a mechanickému namáhání materiálu pri ostrihu je vhodné dodržet minimální vzdálenost vodivého motiva od okraje desky 2,5 mm.

- **Frézování** – provádí se zpravidla na stejném přístroji jako vrtání, pouze se do vretena uchytí místo vrtáku frézka o prumeru 1,5 až 2,5 mm. Presnost frézování je ±0,1 mm. Minimální vzdálenost motivu od okraje desky je 1,5 mm. Frézování se dále používá pro získání vnitřních otvorů v desce průměr 6,3 mm, nepravidelných otvorů a výrezů. Za tímto účelem bývá vhodné výrobci dodat ve speciálních obvodech obrysu ve formátu Gerber (shodné s ostatními). Ztechtu je totiž možné vytvářet data pro pocítacem rízené frézování.

- **Drážkování** – je vhodné při výrobe velkého množství malých desek vedle sebe, které mají být osazovány a pájené strojne. Výrobce plošných spojů provede pouze oboustranné naríznutí obrysu a desticky zůstane vedle sebe jako jedna velká deska. Naríznutí tznět desku po celém obvodu obrysu na 0,4 mm. Šírka drážky je 0,8 mm. Po osazení se potom jednotlivé desticky snadno oddělí rozlíznutím. POZOR!!! Drážkování není určeno pro následné rozlámání. Mohlo by dojít k zlomení SMD součástek u okraje desticek. Minimální vzdálenost motivu od okraje desky je 2,5 mm.

Součástí výrobního procesu je také ekologie. Použité lázne z chemických procesu se musejí zneutralizovat ve speciální neutralizací stanici a zbavit se sraženin na polypropylenových membránách tak, aby do splaškové kanalizace odcházela cistá voda.

Z uvedeného postupu vyplývá, že se jedná o casove nárocný proces. Je overeno, že minimální celková technologická doba výroby je vyšší než 7 hodin. Zpocut operací nutne vyplývá, že interní chybovost výroby nebude nulová. Pohybuje se v rádu 1 až 2 %.

- 23 -
<table>
<thead>
<tr>
<th>Vrstva</th>
<th>Tloušťka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filmy z fotoplotru</td>
<td>0,18 mm</td>
</tr>
<tr>
<td>Nosný materiál</td>
<td>0,2 až 3,2 mm, standardne 1,5 mm</td>
</tr>
<tr>
<td>Základní plátové médí</td>
<td>5, 9, 18, 35, 70 nebo 105 µm, standardne 18 µm</td>
</tr>
<tr>
<td>Prokov – aktivace palladiem</td>
<td>0,1 µm</td>
</tr>
<tr>
<td>Prokov – galvanická med</td>
<td>6 až 8 µm</td>
</tr>
<tr>
<td>Fotorezist (fólie)</td>
<td>38 µm</td>
</tr>
<tr>
<td>Galvanické zesílení medi</td>
<td>20 µm</td>
</tr>
<tr>
<td>Leptuvzdorný rezist – cín</td>
<td>12 µm</td>
</tr>
<tr>
<td>Nepájivá maska</td>
<td>25 µm</td>
</tr>
<tr>
<td>SnPb HAL</td>
<td>10 až 15 µm</td>
</tr>
<tr>
<td>Nikl (chemicky/galvanicky)</td>
<td>1 µm / 5 µm</td>
</tr>
<tr>
<td>Zlato (chemicky/galvanicky)</td>
<td>0,1 µm / 1 µm</td>
</tr>
</tbody>
</table>

2.1.2. Výroba vícevrstvých desek plošných spojů

Výroba vícevrstvých desek plošných spojů semiaditivní technologií je odvozena od postupu pro dvoustranné spoje. Obecně je možné vícevrstvé spoje vyrábět bud dalším postupným vrstvením izolacích laminátu a medených plátů na základní jádro (tenkou dvoustrannou desku) nebo laminací dílcích tenkých dvoustranných desek. V následujících odstavcích si popíšeme jeden z možných postupů výroby čtyřvrstvé desky, pro jednoduchost pouze s otvory procházejícími celou desku, přičemž vynecháme veškeré detaily, shodné s dríve popsanou technologií pro dvoustranné desky.

a) Oboustranně vyleptané jádro

b) Vrstvení fólií nevytvrzených laminátů a mědí

c) Laminace

d) Finální výrobek

Obr.2.4: Znázornení postupu výroby čtyřvrstvé desky.
1. Nejprve se vytvoří vodivé obrazce na základním jádru (obrázek 2.4 a).

2. Na jádro se postupně navrství hrubší a jemnejší fólie ze skelné tkaniny s pryskyricí, která není úplně vytvrzená a na ne medené fólie. (obrázek 2.4 b). Hrubší fólie musí vyplnit a vyrovnat nerovnosti na základním jádru (mezi medenými spoji). K jemnejší fólii potom dobre přilne medená fólie.

3. Ve výkonném laminátoru (lis s vysokou teplotou a tlakem) se provede vytvrzení celé sestavy (obrázek 2.4 c).

Jelikož zvencí vypadá takto vyrobený sendvic jako dvoustranná deska, bude další výrobní postup shodný s obrázkem 2.2 – vrtání, prokovy, fotorezist, zesílení medi, leptuvzdorný rezist atd. Výsledná deska je potom znázornena na obrázku 2.4 d).

2.2. Trídy presnosti

Trídy presnosti definují parametry základních objektu na plošném spoji, jako je například minimální šířka spoje, izolacní vzdálenost, minimální prumer vrtaného otvoru a minimální rozmer pájecí vrtané plošky. V současné době v České republice na toto téma neexistují žádné platné platná státní normy. V držíjších dobách platily podnikové normy, ve kterých se odrážely konkrétní technologické možnosti jednotlivých podniků, vyrábějících plošné spoje (například Tesla Prelouc, ZAVT atd.).

V současné době je nutné se řídit technologickými možnostmi a tomu odpovídajícími cenky jednotlivých výrobce plošných spojů. V tabulce 2.2 jsou uvedeny nejludžitějšší položky ve třech nejpoužívanějších trídách presnosti. Všechny údaje jsou v milích (1 mil = 0.001 inch = 0.0254 mm). Význam jednotlivých položek je patrný z obrázku 2.5. Upozornuji, že se jedná o kompilátor údajů, který se nese dohromady nekolika vybraných výrobce. Pred návrhem plošných spojů je nutné se obrátit na konkrétního výrobce a vyžadat si od nej nejen aktuální parametry tríd presnosti, ale i veškeré další technické a obchodní podmínky, jako například požadované prvky finálních úprav, formát dat, ceníky atd.

Tabulka 2.2: Trídy presnosti.

<table>
<thead>
<tr>
<th>Trída presnosti:</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šířka spoje (W)</td>
<td>12</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Izolacní vzdálenost (Isol)</td>
<td>12</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Prumer vrtáku (ØV)</td>
<td>28</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Prumer pájecí plošky (ØPAD)</td>
<td>ØV + 24</td>
<td>ØV + 16</td>
<td>ØV + 12</td>
</tr>
<tr>
<td>Prumer nepájivé masky (ØSMask)</td>
<td>ØPAD + 10</td>
<td>ØPAD + 8</td>
<td>ØPAD + 6</td>
</tr>
</tbody>
</table>

Obr.2.5: Vyznacení parametru tríd presnosti.
U vícevrstvých spojů se navíc obvykle definují izolacní vzdálenosti a prumery plošek ve vnitřních vrstvách (4 Isol a 4 Pad). V závislosti na presnosti sesazování jednotlivých vrstev a presnosti jejich následného vrtání výrobce požaduje zvetšení techto parametru oproti standardním hodnotám o 4 až 8 milu.

Je dobré si povšimnout, že v tabulce je prumer pájecí plošky ØPAD a nepájivé masky ØSMask vztažen k prumeru vrtáku ØV ale výrobci budeme zadávat konečné prumery otvoru ØD!!! V knihovnách návrhového systému budou mít tedy pájecí plošky a prokovy nastaveny také prumer ØD!!! Musíme tedy na základě tohoto faktu při definici rozmeru plošek kúdají ØPAD a ØSMask pripocít rozdíl mezi ØV a ØD, který cíní zpravidla 4 mily (0,1 mm).

Poznámka:

Konečný prumer otvoru zpravidla stanovujeme jako prumer nožicky součástky plus 8 milu (0,2 mm).

Príklad:

Pro pájecí plošku ve 4. trůde presnosti tedy pro nožicku součástky o prumeru 24 milu (0,6 mm) budeme zadávat (v milech):

- **Prumer otvoru**
 \[
 \text{ØD} = 24 + 8 = 32
 \]
 = nožicka + 8 milu

- **Prumer pájecí plošky**
 \[
 \text{ØPAD} = 32 + 4 + 24 = 60
 \]
 = otvor + nakovení + min. pájecí ploška

- **Prumer nepájivé masky**
 \[
 \text{ØSMask} = 60 + 10 = 70
 \]
 = pájecí ploška + min. nepájivá maska
3. Povrchová montáž

Pri klasické montáži jsou součástky s drátovými prívody po predchozím natvarování a ostřižení zasouvány do prokovených nebo neprokovených der desky s plošnými spoji a následně zapájeny ze strany plošných spojů. Technika povrchové montáže předpokládá využití bezvývodových součástek, případně součástek s vývody, které se pøejí průmo na povrch desky s plošnými spoji (obrázek 3.1). Takové součástky mohou mít podstatné menší rozmery a vyšší hustotu vývodu. V soucasné době jsou k dispozici kompletní rady součástek jak pasivních (rezistory, kondenzátory, cívky, trimry), tak i aktivních (tranzistory, diody, integrované obvody), vcetně různých typu univerzálních pouzder a konektorů. Technika povrchové montáže je tak stále užívanéji pro výhody, které je možno shrnout do nekolika bodů:

- Zmenšení rozmeru a hmotnosti desky s plošnými spoji.
- Zmenšení poctu prokovených der pájecích plošek.
- Vyšší pracovní frekvence (kratší prívody součástek a vzdálenosti vubec).
- Snadné osazování desek pomocí automatu.
- Vyšší spolehlivost, nižší cena osazené desky.

V terminologii povrchové montáže se používají dve základní zkratky:

1. SMT (Surfaces Mounted Technology) = technologie povrchové montáže.
2. SMD (Surface Mounted Devices) = součástky pro povrchovou montáž.

Obr.3.1: Typy prívodu součástek pro povrchovou montáž.

Odlišný způsob osazování a pájení klade specifické nároky na pocítacový návrh plošných spojů, týkající se zejména tvorby pouzder součástek, rozmístění součástek a způsobu vedení spojů. V dalších kapitolách si tedy popíšeme některé typy pouzder součástek pro povrchovou montáž a způsoby jejich osazování a pájení. Pro bližší seznámení se s technologií povrchové montáže doporučuji literaturu [2].

Obr.3.2: Postup pri osazování a pájení SMD a) vlnou, b) pretavením.
Pro hromadné pájení velkých sérií plošných spojů se radu let používá technologie pájení vlnou (wave soldering). Při pájení součástek pro povrchovou montáž pomocí této metody je nutné součástky předem na plošný spoj prílepit (obrázek 3.2 a).

Zásadní obrat v montážních technologiích nastal se zavedením nové technologie pájení pretavením (reflow) do sériové výroby (obrázek 3.2 b). Pájka je nanášena na kontaktní plošky desky plošného spoje předem v podobe pasty (sítotiskem nebo dispenzerem). Do ní jsou osazovány součástky a nakonec je takto osazená deska ohráta na teplotu, která zajistí pretavení pájky. Vzhledem k tomu, že ne vždy máme k dispozici všechny součástky v provedení pro povrchovou montáž, musí být kombinováno pájení pretavením s rучním pájením.

U složitějších obvodů se často používá smíšená montáž. Zde jsou použity oba typy součástek. Za podmínky striktního dodržení pravidla osazení SMD z jedné strany a klasických součástek ze strany druhé je možno použít pájení vlnou (obrázek 3.3 a). Při oboustranné montáži SMD a jednostranné montáži klasických součástek je nutné kombinovat pretavení s pájením vlnou (obrázek 3.3 b).

I když se technika osazování desek s plošnými spoji povrchovou montáží zavádí především z duvodu vyšší produktivity výroby zavedením osazovacích automatů, prosazuje se SMT stále více i v prototypové a malosériové konstrukci a též v amatérske praxi.

Obr.3.3: Postup při osazování a pájení – a) jednostranná, b) dvoustranná smíšená montáž.
3.1. Součástky pro povrchovou montáž

Vzhledem k rozsahu a tématu tohoto skriptu se omezíme na zbežný popis nekterých nejpoužívanějších typu pouzder součástek pro povrchovou montáž s durazem na zvláštnosti při návrhu knihoven pouzder techto součástek. Tato problematika je obsahem Společné normy pro elektrotechniku SNE 2151 – Obrázce pájecích plošek pro povrchovou montáž [3] a je též podrobně popsána v literatuře [2]. Při tvorbě pouzder SMD součástek v knihovnách návrhového systému je nutné správně definovat zejména:

- **Pájecí plošky** – je vhodné dbát doporučení katalogových listu a aplikacních zpráv pro danou součástku respektive typ jejího pouzdra, kde zpravidla bývá uveden vhodný rozmer a umístění pájecích plošek.

- **Nepájivou masku** – Rozmer nepájivé masky, respektive její odstup od pájecích plošek je dán tridami presnosti (tabulka 2.2).

- **Plochu nanesení pájecí pasty** – pro pájení pretavením se musí nadefinovat plošky, na které bude nanesena pájecí pasta. Velikost plošek pro pájecí pastu se doporučuje o 10 až 20% menší než je rozmer plošek ve vrstvě medi. V knihovnách pouzder součástek postačí rozmery plošek ve vrstvě pájecí pasty ponechat shodné s rozmery ve vrstvě medi a úpravu na správný rozmer ponechat na firme, která bude nanášení pasty a osazování provádět.

- **Místo pro lepidlo** – pro pájení vlnou je nutné nadefinovat místo kam bude metodou sítotisku nebo dispenzerem (dávkovacem) naneseno lepidlo (u rozmernejších součástek nekolik míst). Nanášení dispenzerem je vhodnejší, nebot velikostí dávky je možné nadefinovat výšku kapek lepidla pro každou součástku zvláště.

- **Referencní bod** – pro uchycení součástky osazovacím automatem. Tento bod se zpravidla stanovuje do geometrického středu součástky.

Obecně platí, že při návrhu pouzder a dále při rozmístění součástek a návrhu jejich propojení je nutné zohlednit všechny požadavky a podmínky, které stanoví firma, která bude plošný spoj osazovat a pájet. Zároveň je vhodné si všechna vytvořená pouzdra vytisknout a součástky na ne zkoušet přímo.

3.1.1. Pouzdra s metalizovanými ploškami

Do pouzder s metalizovanými ploškami se pouzdrí především rezistory a kondenzátory. V provedení SMD mají tvar kvádru (obrázek 3.4). Velikost pouzdra se znáčí ctyřmístným číslem, kde první dve číslice znamenají délku L a druhé dve číslice šířku W kvádru (v desítkách milu). V současné době se vyrábí pouzdra velikostí 2040 až 0201. Vyrábí se též pouzdra obsahující nekolik rezistoru. Diody se zpravidla pouzdří do válcových pouzder typu MELF (Metal Electrode Face Bonding) a vyrábí se v nekolika velikostech.

![Obr.3.4: Pouzdro a) cipového rezistoru nebo kondenzátoru, b) MELF.](image_url)
Tabulka 3.1: Rozmery vybraných pouzder a pájecích plošek (rozmery v milech).

<table>
<thead>
<tr>
<th>Pouzdro</th>
<th>W/B</th>
<th>L</th>
<th>H</th>
<th>T</th>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>60</td>
<td>120</td>
<td>22</td>
<td>16</td>
<td>60</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>0805</td>
<td>50</td>
<td>80</td>
<td>20</td>
<td>12</td>
<td>50</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>0402</td>
<td>20</td>
<td>40</td>
<td>12</td>
<td>4</td>
<td>22</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>MELF (MLL41)</td>
<td>Ø100</td>
<td>200</td>
<td>–</td>
<td>20</td>
<td>114</td>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td>MiniMELF (MLL34)</td>
<td>Ø63</td>
<td>140</td>
<td>–</td>
<td>16</td>
<td>80</td>
<td>56</td>
<td>76</td>
</tr>
</tbody>
</table>

Pouzdro s páskovými vývody

Do této skupiny patří predevším následující pouzdra (obrázek 3.5):

- **Tantalové kondenzátory** – pouzdra s prívody typu „zahnuté pásky“ z obrázku 3.1.
- **SOD, SOT** – pouzdra pro diody a tranzistory (Small Outline Diode, Transistor).
- **SOIC** – pouzdra pro integrované obvody světla poblíž dvou protilehlých stranách (Small Outline Integrated Circuit). Roztec vývodu vrade je 50 milu, vzdálenost jejich rad 150 nebo 300 milu.
- **QFP** – cílové nebo obdélníkové pouzdra s vývody na čtyřech stranách (Quad Flat Pack). Roztec vývodu se v soucasné době pohybuje od 12 do 50 milu.
- **PLCC** – cílové nosice s vývody typu „J“ (Plastic Lead Chip Carrier). Tato pouzdra se často zasouvají do patic a roztec jejich vývodu je 50 milu.

Obr.3.5: Príklady pouzder s páskovými vývody.

Pájecí plošky pro součástky s páskovými vývody musí být vetší než je pudorys vývodu a jejich konkrétní rozmery jsou pro jednotlivé typy pouzder doporučeny v [3]. Pájecí plošky pro tantalové kondenzátory jsou uvedeny v tabulce 3.2. Dále například vývoj pouzder SOIC 16x32 milu mají doporučenou pájecí plošku 25x80 milu, u PLCC je doporučeno pri rozměru plošky 16x70 milu použít plošky 25x80 milu a u QFP vývodu 10x25 milu plošku 12x60 milu. Obecně šířka plošek by neměla být vetší než polovina roztocce vývodu součástky.

Tabulka 3.2: Rozmery vybraných pouzder a pájecích plošek tantalových kondenzátorů.

<table>
<thead>
<tr>
<th>Pouzdro</th>
<th>W</th>
<th>L</th>
<th>H</th>
<th>W₁</th>
<th>T</th>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60</td>
<td>126</td>
<td>63</td>
<td>46</td>
<td>32</td>
<td>54</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>110</td>
<td>138</td>
<td>75</td>
<td>86</td>
<td>32</td>
<td>94</td>
<td>80</td>
<td>48</td>
</tr>
<tr>
<td>C</td>
<td>126</td>
<td>236</td>
<td>100</td>
<td>86</td>
<td>32</td>
<td>94</td>
<td>96</td>
<td>126</td>
</tr>
<tr>
<td>D</td>
<td>183</td>
<td>284</td>
<td>110</td>
<td>94</td>
<td>32</td>
<td>102</td>
<td>96</td>
<td>166</td>
</tr>
</tbody>
</table>

Symbolika je shodná s kótováním na obrázku 3.4, W₁ je šířka vývodu (je odlišná od šírky celé součástky W), všechny rozmery v milech.
3.1.3. Pouzdra BGA

Velmi rozšířeným pouzdrem, určeným pro montáž do der nebo do patice, bylo PGA (Pin Grid Array). Toto pouzdro bylo vyvinuto pro hradlová pole a procesory v počítačích. Má ctvercový tvar a vývody umístěné na spodní straně základny. Roztec pinu je 100 milu a nelze ji snižovat, protože nelze více zmenšovat prumer vývodu a tedy i prumer vrtaného otvoru v plošném spoji. Miniaturizace techto pouzder je tedy možná pouze zámenou kolíkových vývodů za kulovité vývody, které budou osazovány technologií povrchové montáže. Tak vznikla pouzdra BGA (Ball Grid Array) – obrázek 3.6. Základní nosnou podložkou je zpravidla vícevrstvá desticka plošného spoje. Na ní jsou z jedné strany umístěny a nakontaktovány polovodicové cipy, zalité v plastovém pouzdre, a zdruhé strany kulové vývody vrstvu a nebo 1 mm. Prumer kulových vývodů je od 24 milu do 36 milu a základním materiálem je pájka Sn63Pb37 nebo Sn62Pb36Ag2. Bod tavení se tak pohybuje okolo 180°C, což umožňuje snadné a spolehlivé pájení pretavením.

Obr.3.6: Princip pouzdra BGA.

Pro pouzdra BGA jsou doporučeny pájecí plošky o prumeru 24 milu, nepájivá maska 31 milu, propojení do dalších vrstv plošného spoje pomocí spojů o šířce 8 milu, prokovu o prumeru 25 milu, vrtaných vrtáku 14 milu (obrázek 3.7) [4].

Obr.3.7: Doporučené pájecí plošky a prokovy pro BGA [4].

3.2. Pájení SMD

Jak vyplývá z předchozích kapitol, existují pro hromadnou výrobu elektroniky dve odlišné metody pájení spoje. Pájení vlnou a pretavení. Krome toho je nekdy nezbytné, predevším v amatérské sféře, použít i rucní způsob pájení.
3.2.1. Princip vlny

Pájení vlnou se používá radu let. Jeho výhoda spočívá mimo jiné v tom, že je možné ho použít pro kombinovanou montáž klasických součástek se součástkami SMD. Základní princip zarážení pro pájení vlnou je na obrázku 3.8. Deska s prilepenými součástkami je uložena na dopravník, rešený vetšinou s pomocí rámecku posouvánou retezovým pohonem. Osazená deska prochází postupně pres následující zóny:

- **Nanášení tavidla** – pena nebo spray, poté se vzduchem odstraní prebytecné tavidlo.
- **Předehřev** – aktivace tavidla, snížení teplotního šoku pro desku i součástky (120 – 150°C).
- **Chlazení** – pozvolné ochlazení desky se zapájenými součástkami na teplotu okolí.

Obr.3.8: Princip vlny.

SMD součástky je nutné na plošný spoj pred pruchodem vlnou prilepit. Geometrie kapek lepidla závisí na zpusobu jeho vytvrzování. Na rozdíl od vytvrzování teplem (obrázek 3.9 a) je při vytvrzování ultrafialovým zářením nutné zajistit průměrnou viditelnost kapek lepidla (obrázek 3.9 b). Průměr kapek je zhruba 1 mm.

Obr.3.9: Lepící body při vytvrzování teplem a) a ultrafialovým zářením b).

Při pájení vlnou vznikají dva nežádoucí pruhodné jevy: 1. **stínový efekt**, 2. **tvorení zkratu**. Jsou-li na desce umístěny součástky s určitou výškou, dochází tak zpoždění směru průběhu vlny v prostoru za nimi kvůli takzvaným hluchým míst, tj. míst, která nepřijímou do styku s dostatečným množstvím pájky. To lze částěně eliminovat práve použitím dvojité vlny. Pro úplné potlačení stínového efektu je nutné provést úpravu velikosti pájecích plošek na straně stínu (zvětšení o 1/3) a hlavně dodržet minimální vzájemné vzdálenosti součástek v závislosti na orientaci součástek vzhledem ke směru pohybu vlnou (obrázek 3.10). Z obrázku je zjevné, že s výškou součástek se zvětšují také minimální vzdálenosti. Zduvem snadného testování desek je ovlivněno vhodné vzdálenosti predevším mezi integrovanými obvody zvětšit ještě více.

Tvorení zkratu predstavuje nežádoucí vodivé spojení predevším mezi vývody součástek s menší roztecí vývodu (pod 50 milu). V technologii povrchové montáže se jedná o nejcastejší typ závady. Vyskytuje se predevším tam, kde jsou pájecí plošky opakovaně za sebou ve směru pohybu vlnou. Nejvyšší pravdepodobnost výskytu zkratu je u posledních vývodu vrade, tj.
v místě, kde součástka opouští vlnu. Proto se doporučuje umístit na plošném spoji za kritickými místy prídavné plošky pro zachycení prebytecné pájky (obrázek 3.10).

Obr.3.10: Minimální vzdálenosti při ruzné orientaci součástek [3] (údaje v milech).

3.2.2. Pájení pretavením

Pájka je predem nanesena na pájecí plošky ve forme pasty, potom se do ní osadí součástky a vzápně se pretaví teplotou ponekud vyšší, než je bod tání pájky. V okamžiku zmény skupenství pájky vyvolá její povrchové napeti posuv součástky do takové polohy, která odpovídá stavu minimální energie. Pokud jsou teplotní pomery na desce plošného spoje rovnomerné, dochází k takzvanému vystredování součástek, což je v prípade správne navržených pájecích plošek a spoju žádoucí jev. Ponevadž teplota tavené pájky nemusí být na všech pájecích ploškách v rámci jedné součástky stejná, nejsou pak stejná ani povrchová napetí jednotlivých pájených spojů. To pak může zapříčinit nežádoucí posuv součástek – plavání („swimming“) nebo jejich zvednutí („tombstoning“) nebo také „Manhattan effect“ (obrázek 3.11). Behem návrhu vedení spoju je tedy treba dbát na symetrii odvodu tepla z pájecích plošek do spoju při pájení.

Obr.3.11: Pruvodní jevy při pájení pretavením.

3.2.3. Rucní pájení a opravy SMD

Rucní pájení SMD se používá predevším ke zhotovování malých sérií, prototypu a pri opravách nefunkčních desek. Navíc i doma na amatérské úrovni bez drahého vybavení se dají pájet SMD součástky s roztocí vývodu menší než je například třes lidské ruky. „Nebojme se tedy SMT“. V prípade rucního pájení je ovšem potreba navrhnout pouzdra součástek s vetšími pájecími ploškami a pri návrhu rozmištení součástek dodržovat vetší vzdálenosti součástek.

- 33 -
4. Vlastnosti plošných spojů

V této kapitole budou uvedeny nekteré důležité vlastnosti plošných spojů, potřebné pro správný návrh layoutu. Jedná se především o odpor, kapacitu, indukci a impedanci různých geometrických konfigurací vodicí a plošných spojů. Znalosti těchto vlastností jsou potom vstupní podmínkou pro úvahy o nekterých parazitních jevech na deskách plošných spojů a jejich eliminaci při návrhu (zpoždění pruchodu signálu, odrazy na vedení, preslechy...). Veškeré vztahy uvedené v následujících kapitolách jsou cerpány z literatury [5], [6], [7], [8]. Vztahy jsou ve většině případu zjednodušené, což pro potřeby tohoto skriptu postačuje, nebot cílem je ukázat, na jakých parametrech tyto vlastnosti závisí a ne vypočítat jejich presnou hodnotu. Presné výpočty prenechejme pocítacovým simulacním programu.

4.1. Odpor

Pro odpor vodice platí základní vztah:

\[R = \rho \cdot \frac{l}{S} \left(\Omega \right) \] \hspace{1cm} (4.1)

kde \(\rho \) je merný elektrický odpor \([\text{O.m}]\), \(l \) je délka vodice \([\text{m}] \) a \(S \) jejího prurez \([\text{m}^2] \). Symboly \(t \) a \(w \) odpovídají kótování z obrázku 4.1 a).

Obr.4.1: Znázornění odporu a) vodice, b) vodivé plochy.

Odpor vodivé plochy mezi dvěma vodíci o prumeru \(2.r \) \([\text{m}] \) vzdálených od sebe \(d \) \([\text{m}] \) je potom (obrázek 4.1 b):

\[R = \frac{\rho}{\pi \cdot t} \cdot ln \left(\frac{d}{r} \right) \left(\Omega \right) \] \hspace{1cm} (4.2)

Merný elektrický odpor \(\rho \) je pro med \(\rho_{\text{Cu}}=17,8.10^{-9}\text{O.m} \), pro cín \(\rho_{\text{Sn}}=170.10^{-9}\text{O.m} \), pro stříbro \(\rho_{\text{Ag}}=16.10^{-9}\text{O.m} \) a pro zlato \(\rho_{\text{Au}}=24.10^{-9}\text{O.m} \).

Příklad:

Odpor 10 cm dlouhého medeného spoje o šířce \(w=0,3 \) mm (4. trída presnosti) a tloušťce \(t=45 \) µm bude \(R=0,132 \) O. Naproti tomu odpor vodivé plochy stejné tlouštky mezi vodíci o vzdálenosti \(d=10 \) cm při prumeru \(2.r=1 \) mm bude \(R=0,580 \) mO. (Tloušťka 45 µm představuje základní plátování 18 µm a zhromaždení 26 µm zesílení, způsobené semiauditivní technologií výroby plošního spoje – obrázek 2.3 nebo tabulka 2.1).

4.1.1. Skin efekt

Při vysokých kmitočtech bude proudová hustota blíže ke středu vodice klesat – skin efekt. Definuje se hloubka vnikání \(d \), která predstavuje vzdálenost od povrchu vodice, ve které klesne proudová hustota na hodnotu \(1/e \) (~ 37%). Platí zjednodušený vztah:

\[\delta = \sqrt{\frac{\rho}{\pi \cdot \mu_0 \cdot \mu_r \cdot f}} = K \cdot \frac{1}{f} \left(\text{m} \right) \] \hspace{1cm} (4.3)

kde \(\mu_0 \) je permeabilita vakua \((1,26.10^{-6}=4,\pi.10^{-7} \text{H/m}) \), \(\mu_r \) je relativní permeabilita (pro FR4 i med je \(\mu_r=1 \)), \(f \) je merný elektrický odpor \([\text{Om}]\) a \(f \) je frekvence \([\text{Hz}]\). Dosazením do vztahu (4.3) dostaneme pro med \(K=0,067 \). Pro medený plošný spoj o tloušťce 45µm se tak skin efekt zacne projevovat od frekvence 9 MHz.
Vztah (4.1) je tedy pro páskový vodic při vysokých kmitočtech a pro hodnoty \(2d = t \) nutné korigovat na:

\[
R = \rho \cdot \frac{l}{\delta \cdot 2(w + t)} \quad [\Omega]
\]

(4.4)

Pro odpor vodivé plochy mužeme při vysokých kmitočtech použít zjednodušený vztah

\[
R = \frac{\rho}{2 \cdot \pi \cdot \delta} \ln \left(\frac{d}{r} \right) \quad [\Omega]
\]

(4.5)

Predpokladem opět je, že tloušťka vodivé plochy \(t \) je vetší než dvojnásobek ekvivalentní hloubky vnikání \(d \).

4.2. Kapacita

Kapacitu dvou deskových elektrod mužeme vypočítat ze vztahu:

\[
C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{S}{h} \quad [F]
\]

(4.6)

kde \(\varepsilon_0 \) je permittivita vakua \((8,8 \cdot 10^{-12} \text{F/m}) \), \(\varepsilon_r \) je relativní permittivita (pro nosné jádro plošných spojů typu FR4 je \(\varepsilon_r = 4,7 \)), \(S \) je plocha desek \([\text{m}^2] \) a \(h \) jejich vzdálenost \([\text{m}] \).

Velmi důležité je znát kapacitu různých geometrických konfigurací vodiců, plošných spojů a vodivých ploch (obrázky 4.2, 4.3 a 4.4).

![Obr.4.2: Kapacita vodicu kruhového průřezu.](image)

Mezi dvema vodíci kruhového průřezu (obrázek 4.2 a) je kapacita:

\[
\frac{C}{l} = \frac{\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\ln \left(\frac{d}{r} \right)} \quad [F/\text{m}]
\]

(4.7)

Uvedený vztah platí pro \(r << d \).

Vodic kruhového průřezu nad vodivou plochou (obrázek 4.2 b) má při \(r << h \) kapacitu:

\[
\frac{C}{l} = \frac{2 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\ln \left(\frac{2 \cdot h}{r} \right)} \quad [F/\text{m}]
\]

(4.8)

Dva vodíce kruhového průřezu nad vodivou plochou (obrázek 4.2 c) mají při \(r << 2h \) vzájemnou kapacitu:

\[
\frac{C_m}{l} = \frac{\pi \cdot \varepsilon_0 \cdot \varepsilon_r \cdot \ln \left(1 + \left(\frac{2 \cdot h}{d} \right)^2 \right)}{\ln \left(\frac{2 \cdot h}{r} \right)^2} \quad [F/\text{m}]
\]

(4.9)

Dva plošné vodíce nad sebou (obrázek 4.3 a) mají vztah pro kapacitu odvozený ze základní rovnice (4.6).

\[
\frac{C}{l} = \varepsilon_0 \cdot \varepsilon_r \cdot K_{cl} \cdot \frac{w}{h} \quad [F/\text{m}]
\]

(4.10)
Koeficient K_{C1} zohlednuje vliv nehomogenity elektrického pole na okrajích plošných spojů. $K_{C1}=1+h/2.w$ a pro $h/w<<1$ je $K_{C1}=1$. Pro plošný spoj FR4 je $e_r=4,7$.

Obr.4.3: Kapacita plošných vodiců.

Dva plošné vodice vedle sebe (obrázek 4.3 b) mají kapacitu:

$$\frac{C}{l} = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot K_{C1} \cdot w}{h} \cdot \ln \left(\frac{\pi \cdot (d-w)}{w+l} + 1 \right) \quad [F/m] \quad (4.11)$$

Jelikož jsou plošné vodice na rozhraní dvou prostředí s odlišnou permitivitou e_r (vzduch $e_r=1$ a laminát $e_r=4,7$), je ve vztahu (4.11) použita takzvaná efektivní permitivita $e_{\text{eff}}=(e_r+1)/2$.

Plošný vodic nad vodivou plochou (obrázek 4.3 c) má vztah pro kapacitu odvozený opět ze základní rovnice (4.6). Koeficient K_{C2}, zohlednující vliv nehomogenity elektrického pole na okrajích plošného spoje $K_{C2}=1+h/w$ a pro $h/w<<1$ je $K_{C2}=1$.

$$\frac{C}{l} = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot K_{C2} \cdot w}{h} \quad [F/m] \quad (4.12)$$

Dva plošné vodice nad vodivou plochou (obrázek 4.3 d) mají vzájemnou kapacitu:

$$\frac{C_m}{l} = \frac{\varepsilon_0 \cdot \varepsilon_r}{4 \cdot \pi} \cdot K_{C2} \cdot K_{L2} \cdot \left(\frac{w}{h} \right)^2 \cdot \ln \left[l + \left(\frac{2 \cdot h}{d} \right)^2 \right] \quad [F/m] \quad (4.13)$$

Koeficienty $K_{C2}=1+h/w$ a $K_{L2}=1+1,5.h/w$.

Obr.4.4: Kapacita plošných vodiců ve vnitřních vrstvách a kapacita koaxiálního kabelu.

Plošný vodic mezi dvěma vodivými plochami – spoj ve vnitřní vrstvě vícevrstvé desky (obrázek 4.4 a) má kapacitu:

$$\frac{C}{l} = 2 \cdot \varepsilon_0 \cdot \varepsilon_r \cdot K_{C2} \cdot \left(\frac{w}{h} \right) \quad [F/m] \quad (4.14)$$

kde $K_{C2}=1+h/w$. Ze vztahu je videt, že kapacita bude dvojnásobkem kapacity konfigurace z obrázku 4.3 c.

Dva plošné vodice mezi dvěma vodivými plochami (obrázek 4.4 b) mají vzájemnou kapacitu ($K_{C2}=1+d/w$):

$$\frac{C_m}{l} = \frac{\varepsilon_0 \cdot \varepsilon_r}{\pi} \cdot (K_{C2})^2 \cdot \left(\frac{w}{d} \right)^2 \quad [F/m] \quad (4.15)$$

- 36 -
Kapacita koaxiálního kabelu (*obrázek 4.4 c*) je:

\[
C = \frac{2 \cdot \pi \cdot \varepsilon_o \cdot \varepsilon_r}{\ln \left(\frac{r_i}{r_o} \right)} \quad [F/m]
\] \hspace{1cm} (4.16)

4.3. Indukcenst

V následující části budou uvedeny vztahy pro indukcenst ruzných geometrických konfigurací vodicu, plošných spoju a vodivých ploch (*obrázky 4.5, 4.6 a 4.7*). Ve vztazích jsou použity konstanty \(\mu_0 \) – permeabilita vakua (1,26.10\(^{-6}\)=4.p.10\(^{-7}\) H/m) a \(\mu_r \) – relativní permeabilita (pro FR4, vzduch i med je \(\mu_r=1 \)).

Obr.4.5: Indukcenst vodicu kruhového prurezu.

Indukcenst prímého vodicu kruhového prurezu (*obrázek 4.5 a*) je:

\[
L = \frac{\mu_0 \cdot \mu_r \cdot l}{2 \cdot \pi} \cdot \ln \left(\frac{2 \cdot l}{r} \right) \quad [H]
\] \hspace{1cm} (4.17)

Proudová smycka dvou vodicu kruhového prurezu z *obrázku 4.5 b*), tvorících dvouvodicové vedení, má indukcenst:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{\pi} \cdot \ln \left(\frac{d}{r} \right) \quad [H/m]
\] \hspace{1cm} (4.18)

Dva vodice kruhového prurezu z obrázku 4.5 b, netvorících dvouvodicové vedení (pri \(r << d \)), má vzájemnou indukcenst:

\[
L_m = \frac{\mu_0 \cdot \mu_r}{2 \cdot \pi} \cdot \ln \left(\frac{2 \cdot d}{l} \right) - 1 + \frac{d}{l} \quad [H]
\] \hspace{1cm} (4.19)

Obr.4.6: Indukcenst plošných vodicu.

Indukcenst prímého plošného vodicu (*obrázek 4.6 a*) je:

\[
L = \frac{\mu_0 \cdot \mu_r \cdot l}{2 \cdot \pi} \cdot \left[\ln \left(\frac{2 \cdot l}{l + w} \right) + 0,5 + 0,2235 \cdot \frac{t + w}{l} \right] \quad [H]
\] \hspace{1cm} (4.22)
Dva plošné vodice nad sebou (obrázek 4.6 b) mají indukcnost:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{K_{L1}} \left(\frac{h}{w}\right) \quad [H/m]
\]
(4.23)

kde koeficient \(K_{L1} \approx l + 0.8 \cdot h/w\).

Dva plošné vodice vedle sebe (obrázek 4.6 c) mají indukcnost:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{\pi} \cdot \ln \left[\frac{\pi(d-w)}{w+l} + 1\right] \quad [H/m]
\]
(4.24)

Indukcnost plošného vodice nad vodivou plochou (obrázek 4.6 d) je:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{K_{L2}} \left(\frac{h}{w}\right) \quad [H/m]
\]
(4.25)

kde koeficient \(K_{L2} \approx l + 1.5 \cdot h/w\).

Vzájemná indukcnost dvou vodicu nad vodivou plochou (obrázek 4.6 e) je:

\[
\frac{L_m}{l} = \frac{\mu_0 \cdot \mu_r}{4 \cdot \pi} \cdot \ln \left[1 + \left(\frac{2 \cdot h}{d}\right)^2\right] \quad [H/m]
\]
(4.26)

Obr.4.7: Indukcnost vodicu ve vnitrních vrstvách a indukcnost koaxiálního kabelu.

Plošný vodic mezi dvěma vodivými plochami – spoj ve vnitrní vrstvě vícevrstvé desky (obrázek 4.7 a) má indukcnost:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{2 \cdot K_{L3}} \left(\frac{h}{w}\right) \quad [H/m]
\]
(4.27)

kde koeficient \(K_{L3} \approx l + h/w\).

Dva plošné vodice mezi dvěma vodivými plochami (obrázek 4.7 b) mají vzájemnou indukcnost:

\[
\frac{L_m}{l} = \frac{\mu_0 \cdot \mu_r}{4 \cdot \pi} \left(\frac{h}{d}\right)^2 \quad [H/m]
\]
(4.28)

Indukcnost koaxiálního kabelu (obrázek 4.7 c) je:

\[
\frac{L}{l} = \frac{\mu_0 \cdot \mu_r}{2 \cdot \pi} \left(\frac{r_2}{r_1}\right) \quad [H/m]
\]
(4.29)

4.4. Impedance

Impedance dvouvodicového vedení \(Z_0\) je, při zanedbání odporu vedení a vodivosti izolace mezi vodicí, dána vztahem:

\[
Z_0 = \sqrt{\frac{L/l}{C/l}} \quad [\Omega]
\]
(4.30)

kde za \(L/l\) a \(C/l\) je možno dosadit vztahy zpředchozích kapitol. Po matematických úpravách dostaneme pro konfigurace vodicu dle obrázku 4.8 následující vztahy.
Obr.4.8: Impedance.

Impedance dvou vodicu kruhového prurezu (obrázek 4.8 a) je pri \(r << d \):

\[
Z_0 = \frac{120}{\sqrt{\varepsilon_r}} \cdot \ln \left(\frac{d}{r} \right) \quad [\Omega]
\]

(4.31)

Vodic kruhového prurezu nad vodivou plochou (obrázek 4.8 b) má impedanci:

\[
Z_0 = \frac{60}{\sqrt{\varepsilon_r}} \cdot \ln \left(\frac{2 \cdot h}{r} \right) \quad [\Omega]
\]

(4.32)

Vztah platí pri \(r << h \).

Dva plošné vodice nad sebou (obrázek 4.8 c) mají impedanci:

\[
Z_0 = \frac{120 \cdot \pi}{\sqrt{K_{L1} \cdot K_{C1} \cdot \varepsilon_r}} \cdot \left(\frac{h}{w} \right) \quad [\Omega]
\]

(4.33)

\[K_{L1}=1+0,8 \cdot h/w\] a \[K_{C1}=1+h/2 \cdot w\].

Dva plošné vodice vedle sebe (obrázek 4.8 d) mají impedanci:

\[
Z_0 = \frac{120 \cdot \pi}{\sqrt{\varepsilon_{(eff)}}} \cdot \ln \left(\frac{\pi \cdot (d-w)}{w+t} + 1 \right) \quad [\Omega]
\]

(4.34)

kde efektivní permitivita \(\varepsilon_{(eff)}=(\varepsilon_r+1)/2 \).

Plošný vodic nad vodivou plochou (obrázek 4.8 e) má impedanci:

\[
Z_0 = \frac{120 \cdot \pi}{\sqrt{K_{L2} \cdot K_{C2} \cdot \varepsilon_r}} \cdot \left(\frac{h}{w} \right) \quad [\Omega]
\]

(4.35)

kde koeficienty \[K_{L2}=1+1,5 \cdot h/w\] a \[K_{C2}=1+h/w\].

Plošný vodic mezi dvema vodivými plochami (obrázek 4.8 f) má impedanci:

\[
Z_0 = \frac{60 \cdot \pi}{K_{C2} \cdot \varepsilon_r} \cdot \left(\frac{h}{w} \right) \quad [\Omega]
\]

(4.36)

kde koeficient \(K_{C2}=1+h/w \).

Impedance koaxiálního kabelu z obrázku 4.8 g) je:

\[
Z_0 = \frac{60}{\sqrt{\varepsilon_r}} \cdot \ln \left(\frac{r_2}{r_1} \right) \quad [\Omega]
\]

(4.37)

4.5. Rychlost šíření signálu

Rychlost šíření signálu ideálním homogenním bezeztrátovým vedením je možné vypocítat ze vztahu:

\[
v = \frac{c}{\sqrt{\varepsilon_r \cdot \mu_r}} \quad [m/s]
\]

(4.38)

kde \(c \approx 3.10^8 \text{ m/s} \) je rychlost svetla ve vakuu.

Rychlost šíření signálu na plošném spoji určíme ze vztahu:

\[
v = \frac{1}{\sqrt{\frac{L}{C} \cdot l}} \quad [m/s]
\]

(4.39)
a zpoždění pruchodu signálu \(t_{pd} \) na jednotku délky (\(l=1 \) m) je definováno jako:

\[
t_{pd} = \frac{1}{v} \sqrt{\frac{L}{l} \cdot \frac{C}{l}} \quad [s/m]
\]
(4.40)

kde za \(L/l \) a \(C/l \) je možno dosadit vztahy z předchozích kapitol. Po matematických úpravách dostaneme dle obrázku 4.8 následující zpoždění pro různé konfigurace vodíku:

Konfigurace z obrázku 4.8 a, b, f, g:

\[
t_{pd} = \frac{1}{c} \cdot \sqrt{\frac{K_{Cl}}{K_{L1}}} \quad [s/m]
\]
(4.41)

Dva plošné vodící nad sebou (obrázek 4.8 c):

\[
t_{pd} = 3.33 \cdot 10^{-9} \cdot \sqrt{e_{r}} \cdot \frac{K_{C1}}{K_{L1}} \quad [s/m]
\]
(4.42)

K \(K_{C1}=l/h+w \) a \(K_{L1}=l+0.8/h+w \).

Dva plošné vodící vedle sebe (obrázek 4.8 d):

\[
t_{pd} = 3.33 \cdot 10^{-9} \cdot \sqrt{e_{r(\text{eff})}} \quad [s/m]
\]
(4.43)

kde efektivní permitivita \(e_{r(\text{eff})}=(e_{r}+1)/2 \).

Plošný vodic nad vodivou plochou (obrázek 4.8 e):

\[
t_{pd} = \frac{1}{c} \cdot \sqrt{\frac{K_{C2}}{K_{L2}}} \quad [s/m]
\]
(4.44)

kde koeficienty \(K_{C2}=l+h/w \) a \(K_{L2}=l+1.5/h/w \).

4.6. Vliv kapacitní záteže

Je-li k vedení připojena zatežovací kapacita \(C_{d} \), bude zpoždění šíření signálu \(t'_{pd} \):

\[
t'_{pd} = t_{pd} \cdot \sqrt{1 + \frac{C_{d}}{l}} \quad [s/m]
\]
(4.45)

kde \(C/l \) je kapacita a \(t_{pd} \) zpoždění pruchodu danou geometrickou konfigurací vedení bez kapacitní záteže. Zatežovací kapacitu \(C_{d} \) musíme prepočítat na jednotku délky. Jako kapacitní zátež si mužeme představit vstupní kapacitu hradel císlícových integrovaných obvodů (vstupní kapacity vetšiny typu císlícových obvodů se pohybují okolo 5 pF).

Analogicky bude mít zatežovací kapacita vliv i na výslednou impedanci vedení \(Z'_{o} \):

\[
Z'_{o} = \frac{Z_{o}}{\sqrt{1 + \frac{C_{d}}{l} / \frac{C}{l}}}
\]
(4.46)

4.7. Preslechy

Preslechy jsou jedním z nejzávažnějších problémů, které musíme při návrhu layoutu rešit. Jsou způsobeny elektrickou a magnetickou vazbou mezi vodicí na plošném spoji. Preslechy definujeme jako poměr rušícího napětí \(U_{S} \) (source) a rušeného napětí \(U_{V} \) (victim) vyjádřený v decibelech:

\[
X_{\text{talk}} = 20 \cdot \log \left| \frac{U_{V}}{U_{S}} \right|
\]
(4.47)
Na obrázku 4.9 je znázorněn typický případ preslechu na plošném spoji. Je zrejmé, že preslechy způsobuje vzájemná kapacitní (*C_m*) a induktivní vazba (*L_m*). U kapacitní vazby způsobují rušení zmeny napetí, u induktivní vazby potom zmeny proudu.

Obr.4.9: Typický příklad preslechu na plošném spoji.

4.7.1. Kapacitní vazba

V obrázku 4.9 zanedbáme vzájemnou indukcnost *L_m*. Budeme-li predpokládat, že průbeh napetí *U_S* je v praxi to napetí, které bychom namerili na rušícím spoji, mužeme impedanci *Z_{S1}* nahradit zkratem a impedanci *Z_{L1}* rozpojit (obrázek 4.10 a). Dále v impedancích *Z_{S2}* a *Z_{L2}* zanedbáme induktivní složky. Kapacita *C_{WG}* je parazitní kapacita vedení (plošného spoje).

Obr.4.10: Kapacitní vazba.

Pro výsledné zjednodušené schéma (obrázek 4.10 b) musíme odvodit vztah pro poměr napetí |*U_V|/|*U_S|:

\[
\left| \frac{U_V}{U_S} \right| = \frac{1}{\sqrt{\left(1 + \frac{C_{WG} + C_{L2} + C_{S2}}{C_m} \right)^2 + \frac{1}{\omega^2 \cdot C_m^2 \cdot (R_{L2} \| R_{S2})^2}}}
\]

(4.48)

Omezíme-li se na rešení kapacitní vazby vedení, v němž dochází ke **skokovým zmenám napetí** (tedy například císelcové obvody), dostaneme pro náhradní zapojení *zobrázku 4.10 b* poměr:

\[
\frac{u_V}{u_S} = \pm 1 + \frac{1}{\omega^2 C_m (R_{L2} \| R_{S2})} \cdot e^{-\tau}
\]

kde \(\tau = (C_m + C_{WG} + C_{L2} + C_{S2}) \cdot (R_{L2} \| R_{S2})\) (4.49)

Kladné znaménko v citateli platí při nábežné hrane a záporné při sestupné hrane rušícího signálu *U_S*. Vrcholová hodnota *U_{Vm}* napetí na rušeném vedení záleží na poměru kapacit a je dána vztahem (4.49) pro *t=0*.

4.7.2. Induktivní vazba

Dva elektrické obvody se navzájem ovlivňují prostrednictvím magnetického pole, které je vyvoláno proudy, které jimi protékají. Proud *I_S* indukuje vzájemnou indukcnost do rušeného obvodu napetí *U_{Lm}* Toto napetí vyvolá v rušeném obvodu proud *I_V*.

\[
U_{Lm} = I_V \cdot (Z_{S2} + Z_{L2})
\]

(4.50)
Velikost napětí U_V, které se dostává indukční vazbou do rušeného vedení a dále do záteže Z_{L2}, je dána rovnicí:

$$U_V = I_V \cdot Z_{L2} \quad (4.51)$$

Pro sinusový průběh proudu I_S je indukované napětí U_{Lm} dáno vztahem:

$$U_{Lm} = -j \cdot \omega \cdot L_m \cdot I_S \quad \text{a} \quad |U_{Lm}| = \omega \cdot L_m \cdot I_S \quad (4.52)$$

Pro napětí U_V dostaneme vztah:

$$|U_V| = \frac{|U_{Lm}|}{1 + \frac{Z_{S2}}{Z_{L2}}} = \frac{\omega \cdot L_m \cdot I_S}{1 + \frac{Z_{S2}}{Z_{L2}}} \quad (4.53)$$

kde za Z_{S2} a Z_{L2} dosadíme parametry dle vlastností príslušných obvodu. Pro vetšinu bežných obvodu stačí vstupní impedanci Z_{L2} nahradit paralelní kombinací R_{L2} a C_{L2} a výstupní impedanci Z_{S2} nahradit odporem R_{S2} (vliv kondenzátoru C_{S2} je možné zanedbat, nebot $R_{S2}<<\frac{1}{\omega C_{S2}}$). Z výsledného zapojení z obrázku 4.11 b) je možné odvodit vztah pro napětí U_V:

$$|U_V| = \frac{\omega \cdot L_m \cdot I_S}{\sqrt{\left(1 + \frac{R_{S2}}{R_{L2}}\right)^2 + \left[\omega \cdot (C_{L2} + C_{WG}) \cdot R_{S2}\right]^2}} \quad (4.54)$$

Obr.4.11: Induktivní vazba.

Při rešení induktivní vazby vedení, v nemž dochází ke skokovým změnám proudu, dostaneme pro maximální hodnotu napětí U_V dle náhradního zapojení z obrázku 4.11 výraz:

$$u_{Lm} = -L_m \frac{di_S}{dt} \quad \text{a} \quad u_{V,\max} = \frac{-L_m \cdot \frac{di_S}{dt}}{1 + \frac{Z_{S2}}{Z_{L2}}} \quad (4.55)$$

4.8. Zatížení vodicu na plošném spoji

Při návrhu plošných spoju je nutné znát jejich proudovou a napetovou zatížitelnost. Při vysokém **proudovém zatížení** muže dojít vlivem ztrátového výkonu na odporu plošného vodicí k jeho nadměrnému zahřátí a dokonce až k pretavení. **Napetová zatížitelnost** souvisí s elektrickou pevností izolacních mezer mezi vodicí na plošném spoji.

4.8.1. Proudové zatížení

Proudová zatížitelnost plošných spojů je neobyčejně velká, nebot v porovnání s drátovým vodicem má plošný spoj daleko vetší ochlazovací plochu. Mezený drát o průřezu 0,07 mm² se pretaví při proudu 15 A, kdežto medená fólie plošného spoje o stejném průřezu se pretaví až při proudu 60 A. To odpovídá proudové hustote 850 A/mm². Ovšem trvalá provozní zatížitelnost je ponekud menší. Na obrázku 4.12 jsou krivky závislosti stejnosmerné proudové
zatížitelnosti na šířce vodice pro různé zmeny teploty. Pri prepoctu na proudové hustoty potom vycházi trvalá provozní zatížitelnost vrádu 100A/mm². Maximální provozní teplota je dána takzvaným bodem meknutí základního materiálu, který je u FR4 125°C.

Obr.4.12: Proudová zatížitelnost plošných vodicu (nosný materiál FR4).

Stupen ohrátí plošného vodice vlivem proudu elektrického proudu závisí na odporu vodice, velikosti a době průchodu proudu a možnostech odvodu tepla. Proudové pretížení má za následek nejen zhoršení adheze vodice k základnímu materiálu účinkem vyvinutého tepla, ale také vznik znacných mechanických sil vlivem protoku proudu a tepelné dilatace. Na obrázku 4.13 jsou uvedeny informativní grafy, které mají sloužit jako pomůcka pro odhad přípustných zkratových proudu a jejich trvání, pro tri šírky a dve tlouštky plošného vodice.

4.8.2. Napetové zatížení

Velikost přípustného napětí mezi vodici závisí na mnoha faktorech. Jsou to například velikost mezery, druh základního materiálu, ochranný povlak (nepájivá maska), vlastnosti prostředí a v neposlední rade provozní a predepsané bezpečnostní požadavky. Ochranný povlak prispívá k zachování vlastností desky s plošnými spoji, je-li vystavena působení neprínívných vlivů jako je prach a vlhkost. Rozlišujeme prurazně napětí a maximální provozní napětí. Velikosti

Obr.4.13: Průpustné jednorázové pretžení proudem.

Obr.4.14: Elektrická pevnost izolacních mezer (IEC 512–2).

V České republice určují izolační vzdálenosti normy, které specifikují bezpečnostní požadavky na různé druhy zarízení – například CSN EN 60960 – „Bezpečnost zarízení informační techniky včetně elektrických kancelářských zarízení“ a CSN EN 61010–1 – „Bezpečnostní požadavky na elektrická mericí, řídící a laboratorní zarízení“ atd. Na obrázku 4.15 je uveden příklad minimálních izolacních vzdáleností na plošném spoji s nepájivou maskou podle normy CSN EN 609 50, kapitola 2.9.5.
- Základní izolace je izolace, jejímž porušením muže vzniknout nebezpečí úrazu elektrickým proudem. Tato izolace muže sloužit též pro funkční účely = tato hodnota je tedy určující pro návrh plošných spojů.

- Prídavná izolace je nezávislá izolace, pridaná k základní izolaci, aby zajistila ochranu pred úrazem elektrickým proudem v případe poruchy základní izolace.

- Zesílená izolace je izolace, zajišťující ochranu pred úrazem elektrickým proudem ve stejné míře jako základní plus prídavná izolace.

V každém prípade je vhodné se pri návrhu každého zarízení seznámit s platnými normami nejen v oblasti bezpečnosti.

Minimální vzdálenosti pro desky s plošnými spoji s povlakem (CSN EN 60950)

![Diagram minimálních vzdáleností podle normy CSN EN 60950](image.png)

Obr.4.15: Príklad minimálních vzdáleností podle normy CSN EN 60950.
5. Elektromagnetická kompatibilita

Rozvoj elektroniky, zejména mikroprocesorové techniky, radikálně mení jak koncepci a způsoby použití elektronických zarízení, tak i nároky na jejich instalaci a umístění. Prenos informací, automatické zpracování a záznam dat jsou vystaveny rušivým vlivům, pocházejícím z rozmanitých prumyslových zdrojů rušení, jako například výkonových spínaců, stykaců, relé, motoru, meničů atd. Bezvýznamné není ani rušení elektronických zarízení navzájem. Rušivý vliv prostředí, projevující se nežádoucími vazbami, interferencí či šumu, rezonancemi a prechodovými jevy, může vyvolat nejen nesprávnou funkci elektronických zarízení nebo zničení či zhoršení výsledků prenosu a záznamu dat, ale v nekterých extrémních případech může způsobit i destrukci citlivých elektronických obvodů. Jak omezení rušení na jedné straně, tak zvyšování odolnosti elektronických systémů a zajištění jejich elektromagnetické kompatibility (nebo sluzitelnosti) na straně druhé, se stává v současné době jedním z rozhodujících faktorů při návrhu elektronických zarízení.

Pojem elektromagnetická kompatibilita (EMC) vznikl v šedesátých letech v USA a označuje novou vedeckotechnickou disciplínu, která zkoumá podmínky sluzitelnosti provozu jednotlivých systémů a cesty vedoucí k její optimalizaci. EMC a spolehlivost jsou neoddelitelné. Elektromagnetická pole mají vliv těž na životní organismus. Vysokofrekvenční pole způsobují ohřev tkání, zhoršují podmínky provozu elektronických obvodů. Žádoucí je zajištění elektromagnetické kompatibility elektrotechnických systémů a zajištění jejich sluzitelnosti na straně druhé, se stává v současné době jedním z rozhodujících faktorů při návrhu elektronických zarízení.

Pojem elektromagnetická kompatibilita (EMC) vznikl v šedesátých letech v USA a označuje novou vedeckotechnickou disciplínu, která zkoumá podmínky sluzitelnosti provozu jednotlivých systémů a cesty vedoucí k její optimalizaci. EMC a spolehlivost jsou neoddelitelné. Elektromagnetická pole mají vliv těž na životní organismus. Vysokofrekvenční pole způsobují ohřev tkání, zhoršují podmínky provozu elektronických obvodů. Žádoucí je zajištění elektromagnetické kompatibility elektrotechnických systémů a zajištění jejich sluzitelnosti na straně druhé, se stává v současné době jedním z rozhodujících faktorů při návrhu elektronických zarízení.

Pojem elektromagnetická kompatibilita (EMC) vznikl v šedesátých letech v USA a označuje novou vedeckotechnickou disciplínu, která zkoumá podmínky sluzitelnosti provozu jednotlivých systémů a cesty vedoucí k její optimalizaci. EMC a spolehlivost jsou neoddelitelné. Elektromagnetická pole mají vliv těž na životní organismus. Vysokofrekvenční pole způsobují ohřev tkání, zhoršují podmínky provozu elektronických obvodů. Žádoucí je zajištění elektromagnetické kompatibility elektrotechnických systémů a zajištění jejich sluzitelnosti na straně druhé, se stává v současné době jedním z rozhodujících faktorů při návrhu elektronických zarízení.
Obecné schéma elektromagnetického rušení se skládá ze tří základních prvků:

1. **Zdroj rušení** – umělé zdroje jsou motory, spínace, relé, stykace, televizní a rozhlasové vysílání, spalovací motory, nukleární výbavu... **přírodní zdroje** jsou například slunce, atmosférické poruchy, blesky, galaktický šum...

2. **Vazební médium** – vzdusný prostor, elektrická energetická soustava (kabely, vodice, zemnení), parazitní elektromagnetické vazby (galvanická, indukční, kapacitní, vyzCarolování elektromagnetického pole).

3. **Prijímac rušení** – číslicová technika, pocítace, merící přístroje, telekomunikacní prostředky, systémy přenosu dat, automatizacní prostředky, střelivo a munice, rozhlasové a televizní přijímací, živě tvořené...

5.2. Legislativní rámec v České republice

Legislativní problematiku EMC v České republice reší především zákon Parlamentu CR číslo 22/1997 Sb., o technických požadavech na výrobky a o změne a doplnění nekterých předpisu. Na nej navazují Narízení vlády, kterými se stanovují a upřesňují nekteré pojmy a požadavky zákona 22/1997 Sb.:

- **Narízení vlády č. 168/1997 Sb.,** kterým se stanoví technické požadavky na elektrická zařízení nízkého napětí.
- **Narízení vlády č. 169/1997 Sb.,** kterým se stanoví technické požadavky na výrobky z hlediska jejich elektromagnetické kompatibility.
- **Narízení vlády č. 173/1997 Sb.,** kterým se stanoví vybrané výrobky k posuzování shody.
- **Narízení vlády č. 179/1997 Sb.,** kterým se stanoví grafická podoba české znacky shody, její provedení a umístění na výrobku.

Všechny výše uvedené dokumenty, průzadá další nove vzniklé, by měl mít dobře prostudované každý návrhář elektronického zařízení. Zároveň je vhodné dobře prostudovat normy, které souvisejí s typem navrhovaného zařízení.

Pripomínám, že toto skriptum necití žádný z výše uvedených dokumentu ani jejich částí doslovne, cílem je pouze informovat čtenáře o nejzávažnějších myšlenkách techto dokumentu.

5.2.1. **Zákon č.22/1997 Sb. a Narízení vlády č.169/1997 Sb.**

Zákon č.22/1997 Sb. (dále jen „zákon“) upravuje mimo jiné způsob stanovování technických požadavků na výrobky, které by mohly ohrozit zdraví, bezpečnost, majetek nebo přírodní prostředí a dále upravuje práva a povinnosti osob, které uvádějí na trh tyto výrobky

V §8 zákona jsou vymezeny povinnosti výrobce, dovozce a distributora při uvádění výrobku na trh. Výrobce a dovozce je povinen uvádat na trh jen bezpečné výrobky, přičemž za bezpečný se považuje výrobek, splňující požadavky příslušného technického předpisu, nebo pokud pro nej technický předpis neexistuje, buď splňující požadavky norem, anebo odpovídající stavu vedeckých a technických poznatů známých v době jeho uvádění na trh.

§12 zákona riká, že vláda svými narízeními stanoví výrobky, které představují zvýšenou míru ohrožení a u kterých proto musí být posouzena shoda jejích vlastností s požadavky technických předpisu (Narízení výrobku č.169/1997 Sb.), způsob posouzení shody u vybraných výrobků (Narízení vlády č.173/1997 Sb.) a dále výrobky, které musí být při uvádění na trh oznámeny českou znackou shody (Narízení vlády č.179/1997 Sb.). Vláda dále musí upravit tehdy stanovení stanovení podmínek pro jejich uvádění na trh, zahrnující postupy a úkony, které musí být splněny při posuzování shody (dále jen "postupy posuzování shody.
dejí ověřovány postupy posuzování shody)

- a) posouzení shody zastanovených podmínek výrobce nebo dovozce, popřípadě akreditovanou osobou,
- b) posouzení shody vzorku (prototypu) výrobku autorizovanou osobou,
c) posouzení shody, při níž autorizovaná osoba zkouší specifické vlastnosti a namátkově kontroluje dodržení stanovených požadavků u výrobu,

§13 zákona říká, že výše uvedené stanovené výrobky mohou výrobci nebo dovozci uvést na trh jen po posouzení shody jejích vlastností na bezpečnost výrobu stanovenými tímto zákonem a technickými predpisy (dále jen „posouzení shody“) a že výrobce nebo dovozce stanoveného výrobu je povinen před uvedením výrobu na trh vydat písemné prohlášení o shode s technickými predpisy a o dodržení stanoveného postupu posouzení shody (dále jen „prohlášení o shode“). Náležitosti prohlášení o shode stanovila vláda narízením (opet c.169/1997 Sb.). K temuto náležitostem patří predevším:

1. Technická dokumentace, umožňující posouzení shody, obsahující
 • obecný popis prístroje,
 • koncepční návrh, výrobní výkresy a schémata,
 • popisy a komentáře nutné ke srozumitelnosti,
 • seznam českých technických norem a technických predpisu, které byly využity,
 • výsledky konstrukčních výpočtu a provedených zkoušek...

2. Prohlášení o shode (v českém jazyce), které má tyto náležitosti:
 • identifikační údaje o výrobci nebo dovozci (jméno a příjmení, bydliště, místo podnikání a identifikační císlo fyzické osoby, nebo obchodní jméno, sídlo a identifikační císlo právnické osoby),
 • identifikační údaje o prístroji (název, typ, znacka, model),
 • popis a určení prístroje,
 • údaj o použití způsobu posouzení shody,
 • seznam technických predpisu a norem použitých při posouzení shody,
 • pokud byl vydán zkušební protokol, údaje o autorizované nebo akreditované osobe, která tento dokument vydala,
 • potvrzení výrobce nebo dovozce o tom, že vlastnosti prístroje splňují základní požadavky podle tohoto narízení, že prístroj je bezpečný a že přijal opatření, kterými zabezpečuje shodu všech prístrojů uváděných na trh s technickou dokumentací a se základními požadavky,
 • datum a místo vydání prohlášení o shode.

Doklady o použití způsobu posouzení shody a prohlášení o shode je výrobce nebo dovozce povinen uchovat na území České republiky do 10 let od ukončení výroby, dovozu nebo uvedení na trh.

!!! Prohlášení o shode nezbavuje výrobce a dovozce odpovednosti za vady výrobu ani za škody jimí způsobené !!! (§13, odst.6 zákona)

Dozor nad tím, zda bylo pro stanovené výrobky vydáno prohlášení o shode, provádí Česká obchodní inspekce, která musí uložit pokutu za nesplnění podmínek zákona až 20 milionu korun (§18 a 19 zákona).
5.2.2. Normy EMC – odolnost a vyzarování

Z predchozí kapitoly vyplývá, že všechny přístroje, které mohou při své funkci způsobovat elektromagnetické rušení nebo jejichž funkce muže být takovým rušením ovlivněna musí být provedeny tak, aby elektromagnetické rušení, které způsobují, nepresáhlo přípustnou úroven, a mely odpovídající odolnost vůči elektromagnetickému rušení. Český normalizacní institut proto vydává normy, které se týkají elektromagnetické kompatibility, rušení a odolnosti a jsou harmonizované s evropskými a mezinárodními normami. Nás budou při návrhu plošného spoje elektronického zarízení zajímat predevším normy, týkající se požadavku na zkoušky vyzarování a odolnosti, a dále normy, upresňující způsob merení.

V normách popisujících požadavky na zkoušky nejdríve musíme zjistit meze pro vyzarování a odolnost navrhovaného výrobku. Meze se budou lišit podle prostředí, ve kterém mají být výrobky používány. Poté v normách týkajících se merení najdeme bližší údaje o způsobu merení a konkrétním zkušebním usporádání. Rozlišuje se prostředí:

- obytné, obchodní, lehký průmysl,
- průmyslové,
- speciální.

Norem popisujících požadavky na zkoušky a predevším způsoby merení a zkušební usporádání je mnoho a normotvorný proces není ukončený. V následujících odstavcích budou uvedeny pouze nekteré vybrané normy.

Požadavky na zkoušky – vyzarování:

Účelem těchto norem je stanovení mezi a zkušebních metod elektrických zarízení, přístroje a stroje, které jsou zdrojem elektromagnetického rušení a mohou způsobovat rušení v jiných přístrojích.

- CSN EN 50081–1 EMC – všeobecná norma týkající se vyzarování
 Cást 1: Prostory obytné, obchodní a lehkého průmyslu.
- CSN EN 50081–2 EMC – všeobecná norma týkající se vyzarování
 Cást 2: Průmyslové prostředí.

Požadavky na zkoušky – odolnost:

Tyto normy stanoví požadavky na odolnost elektrických a elektronických zarízení, přístroje a stroje. Účelem je definovat požadavky na zkoušky odolnosti ve vztahu ke spojitému rušení a rušení prechodnými deji, šířenému jak po vodicích, tak i vyzarováním elektromagnetického pole, včetne elektrostatických výbojů.

- CSN EN 50082–1 EMC – všeobecná norma týkající se odolnosti
 Cást 1: Prostory obytné, obchodní a lehkého průmyslu.
- CSN EN 50082–2 EMC – všeobecná norma týkající se odolnosti
 Cást 2: Průmyslové prostředí.

Merení a zkušební usporádání – vyzarování:

Mery se dva typy vyzarování. Jedná se o vyzarování rušivého elektromagnetického pole a jednak vyzarování svorkového rušivého napětí. Elektromagnetické pole se merí logaritmicko-periodickou anténou v rozsahu 30 až 1000 MHz a v uvedeně 10 m/30 m místě překročí 30 až 47 dB(µV/m). Rušivé napětí na svorkách místě překročí 46 až 66 dB(µV) v kmitočtovém rozsahu 0,15 až 30 MHz. Uvedené a konkrétní maximální hodnoty napětí a intenzity pole jsou dány kmitočtem, typem prístroje a prostředím, ve kterém bude využíván.

- CSN EN 55022 Meze a metody merení charakteristik rádiového rušení zarízením informační techniky.
• CSN EN 55014 Meze a metody merení charakteristik rádiového rušení způsobeného zarizením s elektrickým pohonem, tepelným zarizením pro domácnost a podobné účely, elektrickým náradím a podobnými elektrickými prístroji.
• CSN EN 55015 Meze a metody merení charakteristik rádiového rušení způsobeného elektrickými svíčkami a podobným zarizením.
• CSN EN 55011 Meze a metody merení charakteristik elektromagnetického rušení od prumyslových, vedeckých a lékářských (PVL) zarizení.

Merení a zkušební usporádání – odolnost:

Požadavky odolnosti jsou definovány v normách rady 61000–4–X. Přehled zkoušek odolnosti je pritom uveden hned v první norme 61000–4–1, kterou doporučuji do vlastníctví každého profesionálního návrháře a konstruktéra elektrických obvodu a plošných spojů. Zdáších norem, které popisují jednotlivé zkoušky odolnosti podrobně, potom vyplynou požadavky na merící přípravky, kabeláž, speciální merící software, technickou dokumentaci a další položky, které musí návrhár nebo konstruktér testovaného zarizení dodat pro zdárný beh merení odolnosti. Na tomto místě bych chtěl upozornit, že príprava merení EMC je součástí návrhu zarizení.

• CSN EN 61000-4-1 Přehled zkoušek odolnosti. Norma poskytuje všeobecný návod a doporučení týkající se volby vhodné zkoušky a jejího použití, přičemž se bere v úvahu typ zkoušeného zarizení a jeho predokládaného prostředí (místo použití, úroveň rušení, požadovaný stupen odolnosti atd.). Seznam uvažovaných zkoušek odolnosti obsahuje následující zkoušky:
 • nízkofrekvenční rušení šírené vedením v rozvodných sítích nízkého napetí (harmonické, meziharmonické, krátkodobé poklesy a prurušení, nesymetrie trífázového napetí, zmeny kmitoctu síť, stejnosmerná složka ve tridávové sítí...),
 • prechodie jevy šírením a vysokofrekvenční rušení (rázové impulzy, skupiny rychlých prechodových jevu, vysokofrekvenční rušení šírené vedením...),
 • elektrostatická rušení (ESD – elektrostatické výboje),
 • magnetická rušení (magnetická pole sítového kmitoctu, impulzní magnetická pole...),
 • elektromagnetická rušení (elektromagnetická pole šírená zářením),
 • jiné zkoušky odolnosti (napetí sítového kmitoctu v ovládacích a signálních vedeních, stejnosmerné napetí v ovládacích a signálních vedeních).
• CSN EN 61000-4-2 Elektrostatický výboj – zkouška odolnosti. Účelem zkoušky je overení odolnosti zarizení proti elektrostatickým výbojům (ESD), generovaným například při dotyku zarizení s obsluhou nebo predmetem, při vzájemném dotyku osob a predmetu v blízkosti zarizení. V závislosti na okolnostech muže napetí dosáhnout až 15 kV. Používají se zkušební úroveň 2 až 15 kV s nábežnou hranou do 1 ns a dobou trvání 60 ns. Zkouška se vztahuje na všechna elektrická a elektronická zarizení.
• CSN EN 61000-4-3 Vyzarované vysokofrekvenční elektromagnetické pole – zkouška odolnosti. Účelem zkoušky je overení odolnosti zarizení proti elektromagnetickým polím generovaným rozhlasovými vysílací nebo jakýmkoliv jiným prístrojím vyzarujúcim spotřebič elektromagnetickou energii (ruční vysílacky, mobilní telefony...). Používají se zkušební úroveň 1 až 10 V/m v kmitoctovém pásmu 80 až 1000 MHz s 80% modulací sinusovou vlnou 1 kHz.
• CSN EN 61000-4-4 Rychlé elektrické prechodové jevy/skupiny impulzu – zkouška odolnosti. Účelem zkoušky je overení odolnosti zarizení proti skupinám impulzu velmi krátkých prechodných jevu generovaným například špiťáním malých indukčních zatížení a odkakováním kontaktu relé, špiťáním vysokonapetových vypínaču. Zkouška se provádí na napájecích prívodech a na prívodech ovládání a signálu ke zkoušenému
zarízení. Používají se opakující se skupiny impulzu s nábežnou hranou 5 ns, dobou trvání 50 ns, opakovací frekvencí 5 nebo 2,5 kHz, dobou trvání skupiny 15 ms a periodou skupin 300 ms. Zkušební napetí 0,25 až 4 kV se privádí na vstupy zarízení pomocí vazebního cenu o kapacitě 50 až 200 pF.

- **CSN EN 61000-4-5 Rázo vý impul z – zkouška odolnosti.** Účelem zkoušky je ověření odolnosti zarízení proti jednosmernému prechodovému jevu způsobenému spínacími jevy nebo poruchami v rozvodní síti, primárními nebo neprímými údry blesku. Zkouška se provádí napetovým impulsem 0,5 až 4 kV s nábežnou hranou 1,2 µs a dobou trvání 50 µs nebo proudovým impulzem 0,25 až 2 kA s nábežnou hranou 8 µs a dobou trvání 20 µs. Jako vazební celní se používá kapacita 9 nebo 18 µF.

- **CSN EN 61000-4-6 Odolnost proti rušením šíreným vedením, indukovaným vysokofrekvenčními poli – zkouška odolnosti.** Účelem zkoušky je ověření odolnosti zarízení proti elektromagnetickým rušením šíreným vedením, jejichž zdrojem jsou úmyslné vysokofrekvenční vysílání v kmitočtovém rozsahu 9 kHz až 80 MHz. Měření se provádí napětím 0,5 až 10 V v rozsahu 150 kHz až 80 MHz s 80% modulací sinusovou vlnou 1 kHz. Rušivý signál je injektován do kabelu zarízení přes rezistor 100 Ω.

- a tak dále.

5.3. Elektromagnetická kompatibilita a návrh plošného spoje

Nejdříve si v krátkosti shrnme obsah předchozích kapitol. Uvádí-li fyzická či právnická osoba na trh elektronický výrobek, musí pro nej vystavit a uchovávat prohlášení o shode (= shode s normami, narízeními či nejnovejšími vedeckotechnickými poznatky, známými v době jeho uvedení na trh). Způsob posouzení shody a požadované formální náležitosti určuje pro daný typ zarízení vláda svými narízeními.

Prakticky to znamená, že tyto výrobky – a tedy i jejich plošné spoje – musí být odolné proti rušení a samy nesmí vyzaravat rušení nad přípustnou mez. Rozeerberme si tedy, jaké faktory mají na rušení vliv. Uvažujme pritom jednoduché elektronické zarízení, obsahující mikroprocesor, pamet, oscilátor, klávesnici, displej, napájecí zdroj, optoelektronické digitální a odporové vázané analogové vstupy a tranzistorové a reléové výstupy (obrázek 5.1).

![Obr. 5.1: Blokové schéma zarízení.](image)

5.3.1. Rušení

Za rušivý zdroj mužeme považovat každý elektronický obvod, kterým protéká elektrický proud nebo je zdrojem elektrického napětí. Každý takový obvod potom více cí měne vyvazuje rušivou energii, kterou může rušit jednou sám sebe, jednak bezprostredně cí vzdálené okolí. Za zdroj rušení musíme v našem případě (obrázek 5.1) považovat bohužel úplné všechny bloky zarízení. První snahou návrháře elektronického obvodu je v co nejblíže mířit potlačit již samotné vytváření rušivého výkonu. V dalším kroku potom zamezit jeho šíření.

Úplné **potlačení vzniku rušivého výkonu** je možné pouze tak, že zarízení vubec nebudeme používat, což asi není naším cílem. Při návrhu elektronického zarízení tedy musíme
dodržovat návrhová pravidla, vedoucí k vytváření co nejnižších úrovní rušení již na samotném plošném spoji.

V zásadě každý rušivý zdroj šíří rušivou energii dvema zpisyby:

1. po vedeních ve formě rušivých proudů a jimi vyvolaných rušivých napětí na impedancích sítě a záteže,

2. vyzavarováním ve formě elektromagnetického pole.

Do vedení (rozuměj napájení, rozvodné sítě, datová kabeláž...) se rušení dostává

1. po vedeních ve formě rušivých proudů a jimi vyvolaných rušivých napětí na impedancích sítě a záteže,

2. vyzavarováním ve formě elektromagnetického pole.

Vyzarovaní elektromagnetického pole budou způsobovat všechny proudové smycky našeho obvodu včetně těch, které tvorí vstupně-výstupní a napájecí kabeláže. Nezanedbatelnou složku pole může zvarovat nesprávné zapojení klávesnice a displeje. K potlačení této složky šíření rušení je nutné znát alespoň základní principy vytvárení a šíření elektromagnetického pole.

5.3.1.1. Elektromagnetické pole vyvarované proudovou smyckou

Elektromagnetické pole je charakterizováno svoji elektromagnetickou složkou E a H.

Složky pole jsou na sebe kolmé a jejich vektorový součin $S=EH$ je Poytingův vektor, jehož smer odpovídá smeru šíření pole (obrázek 5.2). Jeho velikost udává hustotu vytvarované energie na jednotku plochy v daném místě. Pro elektromagnetické pole, vytvořené proudovou smyckou o ploše A, platí vztahy [12] (obrázek 5.2 a):

$$|H| = \frac{\pi \cdot I \cdot A}{\lambda^2 \cdot D} \sqrt{1 - \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^2 + \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^4} \cdot \sin\sigma \quad [\text{A/m}]$$

$$|E| = \frac{Z_0 \cdot \pi \cdot I \cdot A}{\lambda^2 \cdot D} \sqrt{1 + \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^2} \cdot \sin\sigma \quad [\text{V/m}]$$

kde I je proud smyckou [A], A je plocha smycky [m2], λ je vlnová délka [m], D je vzdálenost vyšetrovaného bodu od proudové smycky a Z_0 je vlnová impedance prostředí (377 Ω).

V oblasti blízkého pole ($/2p.D>1$) budou intenzity E a H záviset na:

$$H \approx \frac{I \cdot A}{4 \cdot \pi \cdot D^3} \quad [\text{A/m}]$$

$$E \approx \frac{Z_0 \cdot I \cdot A}{2 \cdot \lambda \cdot D^2} \quad [\text{V/m}]$$

V oblasti vzdáleného pole ($/2p.D<1$) budou intenzity E a H záviset na:

$$H \approx \frac{\pi \cdot I \cdot A}{\lambda^2 \cdot D} \quad [\text{A/m}]$$

$$E \approx \frac{Z_0 \cdot \pi \cdot I \cdot A}{\lambda^2 \cdot D} \quad [\text{V/m}]$$
5.3.1.2. Elektromagnetické pole vyzarované prímým vodicem

Podle [12] platí pro elektrické a magnetické pole, vytvorené prímým vodicem (obrázek 5.2 b), následující vztahy:

\[
|H| = \frac{I \cdot l}{2 \cdot \lambda \cdot D} \sqrt{1 + \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^2} \cdot \sin \sigma \quad [\text{A/m}] \tag{5.7}
\]

\[
|E| = \frac{Z_0 \cdot I \cdot l}{2 \cdot \lambda \cdot D} \sqrt{1 - \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^2 + \left(\frac{\lambda}{2 \cdot \pi \cdot D}\right)^4} \cdot \sin \sigma \quad [\text{V/m}] \tag{5.8}
\]

dkde \(I\) je proud protékající smyckou [A], \(l\) je délka vodice (dipol) [m], \(\lambda\) je vlnová délka [m], \(D\) je vzdálenost vyšetrovaného bodu od proudové smycky a \(Z_0\) je vlnová impedancia prostředí (377 O).

V oblasti **blízkého pole** \((?/2.p.D>I)\) budou intenzity \(E\) a \(H\) záviset na:

\[
H \approx \frac{I \cdot l}{4 \cdot \pi \cdot D^2} \quad [\text{A/m}] \tag{5.9}
\]

\[
E \approx \frac{Z_0 \cdot I \cdot l \cdot \lambda}{8 \cdot \pi^2 D^3} \quad [\text{V/m}] \tag{5.10}
\]

V oblasti **vzdáleného pole** \((?/2.p.D<I)\) budou intenzity \(E\) a \(H\) záviset na:

\[
H \approx \frac{I \cdot l}{2 \cdot \lambda \cdot D} \quad [\text{A/m}] \tag{5.11}
\]

\[
E \approx \frac{Z_0 \cdot I \cdot l}{2 \cdot \lambda \cdot D} \quad [\text{V/m}] \tag{5.12}
\]

5.3.1.3. Kmitočtové spektrum lichobežníkového prubehu

Každý periodický signál je reprezentován v časové i kmitočtové oblasti. Prevod mezi časovou a kmitočtovou oblastí provádíme pomocí Fourierovy transformace. Na obrázku 5.3 a) vidíme vyjádření lichobežníkového prubehu v kmitočtové oblasti. Toto kmitočtové spektrum muže být vyzářeno jako rušivá energie. Znamená to tedy, že z hlediska elektromagnetického rušení jsou krome pracovní frekvence \(f_0\) a jejích násobku velmi důležité hodnoty délek impulzu \(t\) a nábežné a sestupné hrany \(t_r\) a \(t_f\). Právě kmitočty, odpovídající délce impulzu a nábežné respektive sestupné hrany, predstavují zpravidla složku rušení s největší amplitudou. Proto je velmi důležité při návrhu elektronického obvodu peclive zvážit typ použitých obvodů práve z hlediska velikosti parmetru \(t\), a \(t_f\) (tabulka 5.1). Zároveň je vhodné zvážit potřebnou délku impulzu, která je zpravidla odbavena od kmitočtu řídícího oscilátoru, nebo je možné ji upravit programově. Pro amplitudy spektrálních car platí následující vztahy (za predpokladu \(t_r = t_f\)) [12]:

\[
\text{pro } f < f_1 \quad A_f = \frac{2 \cdot A \cdot (\tau + t_f)}{T} \tag{5.13}
\]

\[
\text{pro } f_1 < f < f_2 \quad A_f = \frac{2 \cdot A}{\pi \cdot f \cdot T}
\]

\[
\text{pro } f < f_2 \quad A_f = \frac{2 \cdot A}{\pi^2 \cdot f^2 \cdot t_r \cdot T}
\]

Na plošném spoji ovšem najednou pracuje více obvodu, jejichž frekvence, délka impulzu i nábežné a sestupné hrany nejsou totožné, a tedy jejich kmitočtové spektrum je ponekud
bohatší. Na obrázku 5.3 c) je vidět praktický příklad spektra, které bylo namereno spektrálním
analyzátorem s kalibrovanou anténou při merení vyzarování podle norem EMC.

\[A(f) = A_0 \cdot \left(1 + \frac{f}{f_0}\right)^{-n} \]

\[dB/dec. = 20 \log \left(\frac{A_2}{A_1}\right) \]

Obrázek 5.3: Spektrální analýza periodického prubehu a), b) a příklad namereného spektra c).

5.3.1.4. Souhlasné a nesouhlasné rušení

Odlišnost souhlasného rušení (common mode) a nesouhlasného rušení (differential mode) je
nejlépe patrná z obrázku 5.4. Zatímco proudová smycka nesouhlasné složky rušení je
uzavřena přes vodice, vedoucí od zdroje k záteži, souhlasná složka rušení má proudovou
smycku uzavřenou přes parazitní vazební impedance (zpravidla kapacity) \(Z_{cm} \), \(Z_{a} \) a
společný vodic (zem).

Obr.5.4: Souhlasné a nesouhlasné rušení.

5.3.2. Návrh plošných spojů z hlediska EMC

Jak již bylo receno, elektronická zarízení, a tedy i jejich plošné spoje, musí být odolné proti
rušení a samy nesmí vyzarovať rušení nad příměsnou mez. Oddělit od sebe návrhová pravidla
pro potlačení vyzarování a vysokou odolnost nelze. Zpravidla totiž platí, že elektronické
zarízení, které „nevyzaruje“ je zároveň odolné proti rušení. Návrh plošného spoje je z
hlediska vyzarování a odolnosti treba chápat jako komplexní cínost, která záčiná již
na při ideovém či blokovém návrhu schématu každého zarízení. Z obsahu předchozích
kapitol lze snadno vyvodit, že mezi základní pravidla návrhu plošného spoje z hlediska
elektromagnetické kompatibility patří především:

- **Minimalizace hodnot proudu** = volba vhodných typu obvodu, výber obvodu z hlediska
 vstupních impedancí, správné impedance hubec...

- **Minimalizace proudu proudových smyček respektive délek spojů** = vhodné rozmístování
 součástek a vedení spojů, zemění, rozličná med, správná konfigurace napájecí, vstupní i
 výstupní kabeláže, správné blokování napájení pomocí kondenzátoru... Zároveň dodržení
totoho pravidla zvyšuje odolnost zarízení před elektromagnetickým rušením.

- **Minimalizace kmitočtového spektra** = nepoužívat zbytečné rychlé obvody (náběžné a
 sestupné hrany), zbytečné rychlou datovou komunikaci...

- **Filtrace a ochrany napájení a I/O svorek** = ochrana pred ESD a prechodovými jevy,
 omezení vyzarování do vedení...

- **Stínění** = potlacení vyzarování a zároveň zvýšení odolnosti.
Obr. 5.5: Typické chyby na plošném spoji [12] a jejich řešení.

Na obrázku 5.5 a) až d) vidíme typické návrhářské chyby. Všechny čtyři konfigurace mají jednu chybu společnou, a tou je **průliš velká plocha proudové smyčky**. V případě oscilátoru a procesoru je nutné spoje X1 a X2 vést co nejbližě u sebe, případně mezi nimi umístit společný vodic (GND). Napájení VCC a GND v případě obrázku 5.5 b) je vhodné vést blízko sebe pod integrovaným obvodem, u spínacích zdrojů je nutné součástky C, L a T umístit tak blízko sebe, aby plocha proudové smyčky byla minimální. Prípad 5.5 d) je typickou chybou nevhodně navržené konfigurace sbernice, a to jak na plošném spoji, tak i v případě kabeláže. Tato chyba zpravidla způsobuje, že celé zarizení nevyhoví požadavkům EMC na vyzaravání!!! Vodic s nejrychlejšími zmenami logických úrovní by měl bezprostředně sousedit se společným vodicem. Jelikož ovšem vyzarované kmitočtové spektrum závisí nejen na samotné frekvenci zmen logických úrovní, ale i na nábelných a sestupných hranách, jsou problematiky vlastně všechny vodicí. Nejlepší úpravou je proložení společných vodiců (GND) mezi každý signálový vodic, což sice téměř zavádí dozadu pocet vodiců, ale z vlastních zkušeností vím, že taková konfigurace sniží úroven vyzarování sbernice až o 20 dB!!! Na vícevrstvém plošném spoji je možné tuto situaci vyřešit také tím, že pod všemi signálovými vodicí bude v bezprostřední sousední vrstve rozlitá med, která bude pripojená na obou koncích sbernice ke společnému vodicí (GND).

5.3.3. Součástky a EMC

Problematika elektromagneticky kompatibilních součástek je velmi široká a začíná již při návrhu layoutu cipu a jeho pouzdrení. Nove vyvíjené součástky nemají například napájecí vývody v úhlopříčce pouzdra, ale proti sobe, složitější součástky musí mít napájecích vývodu více (obrázek 5.6). Z duvu omezení vyzarování se používají oscilátory s co nejnižšími kmitočtem a pomocí fázových závesů se provede jeho vynásobení až na cipu mikroprocesoru. Snažím se samozřejmě také možné proudové impulzní spotřeby, zvýšení odolnosti proti proudové injekci, zvýšení šumové imunity atd.

Jako návrháři plošných spojů se budeme orientovat spíše aplikace, tedy na výber vhodných součástek z existujících nabídky. Mezi obecná pravidla výberu součástek z hlediska elektromagnetické kompatibility bude patřit zejména:

- Výber součástek s nízkými hodnotami impulzních proudu (tabulka 5.1 a obrázek 5.7) a s napájecími vývodům umístěnými tak, aby umožňovaly návrh proudových smyček s co nejmenší plochou (obrázek 5.6).
- Nepoužívat zbytečné rychlé obvody (nábelné a sestupné hrané). Přehled vlastností základních logických rad je uveden v tabulce 5.1.
- Maximální využití součástek SMD – menší rozmery a tedy i
průzrnější parazitní vlastnosti (parazitní indukcnost prívodu se
oproti součástkám se standardními prívody sníží až o 50%).
- Bezpodmíněné propojení chladicu se společným vodicem (GND) u součástek s pracovním kmitočtem nad 75 MHz. Na
chladic se kapacitní vazbou přenáší průslně kmitočtové
spektrum z cípu, které je v průpade, že chladic není uzemněn,
yzářeno do prostoru jako elektromagnetické rušení.
- Volba vhodných blokovacích kondenzátoru, filtracích
 tłumivek, indukcností a ochranných prvku (bude popsáno dále).
- Výber izolacích prvku (transformátoru, optronu, DC/DC
meniču…) s co nejnižšími parazitními vazebními kapacitami a
indukcnostmi.

Obr.5.6: Konfigurace napájecích vodiců.

Tabulka 5.1: Přehled vlastností logických rad.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>3</td>
<td>10/8</td>
<td>40</td>
<td>5</td>
<td>10k(=**)</td>
<td>5</td>
<td>30/150</td>
<td>0,4</td>
<td>16</td>
</tr>
<tr>
<td>S</td>
<td>3</td>
<td>3/2,5</td>
<td>125</td>
<td>4</td>
<td>5k/100k</td>
<td>4</td>
<td>15/50</td>
<td>0,4</td>
<td>30</td>
</tr>
<tr>
<td>LS</td>
<td>3</td>
<td>10/5</td>
<td>65</td>
<td>5,5</td>
<td>10k(=**)</td>
<td>5,5</td>
<td>30/160</td>
<td>0,4</td>
<td>8</td>
</tr>
<tr>
<td>F, AS</td>
<td>3</td>
<td>3/2,5</td>
<td>125</td>
<td>4,5</td>
<td>10k(=**)</td>
<td>4,5</td>
<td>15/40</td>
<td>0,4</td>
<td>15</td>
</tr>
<tr>
<td>CMOS 5V</td>
<td>5</td>
<td>70/70</td>
<td>4,5</td>
<td>5</td>
<td>—**</td>
<td>5</td>
<td>300/300</td>
<td>1,2</td>
<td>1</td>
</tr>
<tr>
<td>CMOS 12V</td>
<td>12</td>
<td>25/35</td>
<td>12</td>
<td>5</td>
<td>—**</td>
<td>5</td>
<td>300/300</td>
<td>3,0</td>
<td>1</td>
</tr>
<tr>
<td>HCMOS</td>
<td>5</td>
<td>3,5/3,5</td>
<td>90</td>
<td>4</td>
<td>10k(=**)</td>
<td>4</td>
<td>160/160</td>
<td>0,7</td>
<td>15</td>
</tr>
</tbody>
</table>

*) impulzní vnější spotreba 1 hradla pri preklápení logické úroveň (Iᵢ z obrázku 5.7) **) vstupní odpor je vetší než 100kΩ

Obr.5.7: Impulzní spotreba císlivých obvodů.
6. Návrhová pravidla

Nejdříve shrnme nekteré obecné požadavky na návrh plošných spojů, které vyplynuly z předchozích kapitol tohoto skripta. Mezi základní požadavky cí pravidla tedy patří:

- Správná obvodová funkce.
- Vyrobitebnost a snadné osazování.
- Spolehlivost a snadná opravitelnost.
- Estetický design.
- Nízká cena.
- Shoda s platnou legislativou, tedy se zákony, predpisy a normami z oboru EMC i bezpečnosti (=izolacní vzdálenosti, proudové zatížení...).

V dalších kapitolách si postupne popíšeme nekterá nejdůležitější konkrétní návrhová pravidla, spadající do oblasti správné obvodové funkce a EMC.

6.1. Rozmístění součástek

Vhodné rozmístění součástek je základním predpokladem pro správnou funkci zarízení. Jednotlivá pravidla pro umístění blokovacích kondenzátorů, ochranných součástek, prízpusobovacích obvodu atd. budou obsahem samostatných kapitol. Mezi základní principy rozmístění součástek patří predevším [9]:

- Rozmístění součástek smerem od vyšší k nižší šířce pásma (obrázek 6.1).
- Vzájemná fyzická separace jednotlivých funkcních bloku (analogový, síťový, oscilátor, I/O obvody, napájení atd.).
- Minimalizace vzdáleností za účelem minimalizace proudových smyček.

Základní podmínkou správného rozmístění součástek a návrhu plošného spoje je predevším znalost obvodové funkce a pracovního režimu každé součástky v zapojení.

6.2. Razení vrstev plošného spoje

Mezi první otázky, které si musíme položit při návrhu plošného spoje, patří pocet vrstev plošného spoje. **Pocet vrstev** je určen predevším hustotou součástek, poctem uzlu, systémem sberníc, šumovou imunitou a systémem napájení, nutností vzájemné separace signálových spojů, impedancí... **Význam vrstev**, neboť priradení konkrétních signálových spojů a napájení do jednotlivých vrstev vyplývá z obecných vlastností tehto vrstev. Při návrhu vícevrstvých desek plošných spojů se používají tři druhy vrstev: Vnejší signálové vrstvy (microstrip), vnitřní signálové vrstvy sousedící s vodivými plochami (stripline) a vodivé plochy určené pro nízkoimpedancní rozvod napájení (plane). Vrstvy typu „microstrip“ (obrázek 4.3 c) mají nižší parazitní kapacitu a tím i nižší prenosové zpoždění než vrstvy typu „stripline“ (obrázek 4.4 a). Díky stínění plochami mediují vrstvy typu „stripline“ vyšší odolnost vůči rušení a samozřejmě nezpůsobují vyzarovaní. Pro razení vrstev plošného spoje platí následující pravidlo [9]:

Každá signálová vrstva musí sousedit s vodivou plochou, nejlépe se společným vodicem.
Tabulka 6.1: Príklad správného razení vrstev pro vícevrstvé desky plošných spoju [9].

<table>
<thead>
<tr>
<th>Vrstvy (vnitřní ochrana)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>komentár</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 vrstvy</td>
<td>S1</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pouze pro návrh nenárocných a pomalých aplikací</td>
</tr>
<tr>
<td>4 vrstvy</td>
<td>S1</td>
<td>G</td>
<td>P</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nízká impedance napájení kritické spoje pouze do S1</td>
</tr>
<tr>
<td>6 vrstvy</td>
<td>S1</td>
<td>G</td>
<td>S2</td>
<td>S3</td>
<td>P</td>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vysočí impedance napájení kritické spoje pouze do S1</td>
</tr>
<tr>
<td>6 vrstvy</td>
<td>S1</td>
<td>S2</td>
<td>G</td>
<td>P</td>
<td>S3</td>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nízká impedance napájení kritické spoje pouze do S2</td>
</tr>
<tr>
<td>6 vrstvy</td>
<td>S1</td>
<td>G</td>
<td>S2</td>
<td>P</td>
<td>G</td>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kritické spoje do S1, S2 a S3</td>
</tr>
<tr>
<td>8 vrstvy</td>
<td>S1</td>
<td>S2</td>
<td>G</td>
<td>S3</td>
<td>S4</td>
<td>P</td>
<td>S5</td>
<td>S6</td>
<td></td>
<td></td>
<td>vysoká impedance napájení kritické spoje pouze do S2 a S3</td>
</tr>
<tr>
<td>8 vrstvy</td>
<td>S1</td>
<td>G</td>
<td>S2</td>
<td>G</td>
<td>P</td>
<td>S3</td>
<td>G</td>
<td>S4</td>
<td></td>
<td></td>
<td>doporučeno pro EMC</td>
</tr>
<tr>
<td>10 vrstvy</td>
<td>S1</td>
<td>G</td>
<td>S2</td>
<td>S3</td>
<td>G</td>
<td>P</td>
<td>S4</td>
<td>S5</td>
<td>G</td>
<td>S6</td>
<td>doporučen pro EMC</td>
</tr>
</tbody>
</table>

S = signálová vrstva
P = napájení
G = společný vodic (zem)

Tabulku 6.1 není možné považovat za dogma. Každý návrh je svým způsobem specifický a podle náročnosti obvodového zapojení, systému napájení a druhu si gnálu je nutné vymyslet správné razení vrstev pro každý konkrétní případ zvlášt. Jiné razení vrstev může mít deska, na které jsou pouze cínsicové obvody s jedním napájením, a jiné deska, na které je krome cínsicové cásti také růžení trífázových motoru, analogová jednotka se symetrickým napájením a spínané zdroje.

Obr.6.2: Pravidlo 20H [9].

Velmi důležitém pravidlem je takzvané pravidlo 20H, které říká, že na okrajích plošného spoje musí vodivá plocha GND presahovat napájecí plochu nebo signálové spoje o dvacetinásobek jejich vzájemné vzdálenosti (obrázek 6.2 b). Důvodem je potlačení vybarování do boku plošného spoje (až 70%). U dvoustranného plošného spoje, jehož tloušťka je 1,5 mm by ovšem tento presah predstavoval 3 cm, což je příliš mnoho a tak se používá úprava podle obrázku 6.2 c), kde celý plošný spoj se obemkne 1 mm širokým prstencem, pravidelně propojovaný pomocí prokovu do vrstvy GND.

6.3. Zemnění

Nekde na prelomu fází rozmístování součástek a návrhu spoju je nutné zvolit správnou metodou zemnění. Rozlišujeme dva druhy zemnění – jednobodové a vícebodové, pírcemž u jednobodového ještě rozlišujeme sériové a paralelní zapojení (obrázek 6.3). Pod bloky oznacenými cínsicemi 1, 2 a 3 si můžeme predstavit jednotlivé součástky, integrované obvody nebo ucelené funkční bloky. Na základe zkušeností z prednášek pripomínám, že veškeré indukčnosti na obrázku predstavují parazitní indukčnost vodicu a nejsou to tedy samostatné součástky!!. Je nutné si uvedomit, že například spoj ve 4. tride presnosti (šírka 0,3 mm) a o tloušťce 45 µm má parazitní indukčnost zhruba 10 nH/cm.

6.3.1. Jednobodové zemnění

Jednobodové zemnění je vhodné predevším pro propojování obvodu se součástkami, jejichž kmitočtové spektrum nepresahuje 1 MHz a neprojevuje se tak příliš významné parazitní indukčnost vodicu. Je tedy vhodné pro audio aplikace, napájecí zdroje pracující se sítovým
kmitočtem, stejnosměrné aplikace atd. Pro výber mezi sériovým a paralelním zapojením musíme dobře znát princip funkce celého obvodu včetně toku jednotlivých významných proudu obvodom. Obecně lze říci, že **paralelní zapojení** se zpravidla používá pro obvody, jejichž proudy I_1, I_2 a I_3 mají srovnatelné úrovne a všechny bloky jsou vzájemně propojeny signály stejných úrovní. **Sériové zapojení** je vhodně spíše pro zapojení, jejichž signálová cesta vede postupně cestou $3 \rightarrow 2 \rightarrow 1$, přičemž úroveň signálu je vzestupná (například $3=3$ predzesilovac, $2=korekce$, $1=koncový stupen) a též proudy $I_1>I_2>I_3$.

![Jednobodové sériové](image1) ![Jednobodové paralelní](image2) ![Vícebodové](image3)

Obr. 6.3: Způsoby zemění.

6.3.2. Vícebodové zemění

Vícebodové zemění je vhodné pro vysokofrekvenční a tedy i cíclové obvody. Princip spočívá v tom, že každá součástka je co nejkratším prívodem propojena na nízkoimpedancní vodivou plochu – například rozlévanou medi v samostatné vrstvě plošného spoje (GND).

Vícebodové zemění nekdy bývá posíleno kostrením k šasi přístroje podle **pravidla $\pi/20$**, které říká, že zařízení s hodinovým kmitočtem nad 50 MHz by měla mít vodivou plochu GND plošného spoje pravidelně ve vzdálenostech $\pi/20$ vedenou spojnou s kovovým šasi přístroje (vlnová délka $\pi=3.10^8/f$) [9]. Prakticky se takové posílení provádí přišroubováním plošného spoje ke kovové desce. Tato technika se používá například v osobních počítačích u základních desek typu ATX.

![Vícebodové zemění](image4)

Obr. 6.4: Syndrom švýcarského sýru.

Jak bylo receno, vícebodové zemění na plošném spoji predpokládá existenci **souvíslé vodivé plochy** GND alespoň v jedné samostatné vrstvě plošného spoje. Združují ze **souvísle**. Při návrhu plošných spojů často dochází k chybě, která se v literatuře (například [9] a [12]) nazývá **syndrom švýcarského sýru**. Lapidárně receno – vodivá plocha GND je jak rešetko. To je způsobeno půjčovanými ploškami a prokovy, které procházejí celou desku, tedy i vrstvou GND. Od nich musí GND ustoupit o určitou izolaci vzdálenost. Uvažujme typickou situaci na obrázku 6.4. Mejme dva integrované obvody, zníže I_{O1} prekáží zlog.0 na log.1. Díky vstupní kapacitě C_L obvodu I_{O2} při zmene úrovne protežed obvodem impulzní nabíjecí proud I_L. Proudová smyčka se uzavírá pres GND zpet k obvodu I_{O1} (obrázek 6.4 a). Pri realizaci na plošném spoji (obrázek 6.4 c) byly mezi I_{O1} a I_{O2} umísteny dva další obvody s pruchozími otvory, z nichž jeden má příliš velké pájecí plošky (na obrázku označen „Špatně“). Ve vrstvě GND u tohoto obvodu neprochází mezi půjčovanými ploškami žádná med a vratná cesta proudu I_L.

Použití vodivé plochy pro společný vodic (GND) prináší pro návrháře velmi významný efekt, a tím je minimalizace proudových smyček. Na obrázku 6.5 b) je znázornena plocha smyčky pro prípad, že GND je vedena pouze jako spoj a na obrázku 6.5 c) je vidět drastické snížení plochy smyčky při použití vodivé plochy (obrázky jsou pouze schematické, protože plochy smyček nezahrnují umístění cipu v integrovaných obvodech).

Obr.6.5: Vliv vodivé plochy na velikost proudových smyček.

Pomocí vztahu (4.22) a (4.25) je možné prokázat vliv vodivé plochy na snížení parazitní indukcnosti signálových spojů. Porovnáme-li velikosti indukcností spoje o délce \(l = 10 \text{ cm} \) při šířce \(w = 0,3 \text{ mm} \) a tloušťce \(t = 45 \mu \text{m} \) který není podložený vodivou plochou (vztah 4.22), a stejného vodic, který se nachází \(h = 1,5 \text{ mm} \) nad vodivou plochou (vztah 4.25), dostaneme pro samostatný vodic indukcnost 137 nH a pro vodic nad vodivou plochou 73 nH.

Vodivá plocha snižuje parazitní indukcnost spoju o 50 %!!

6.4. Blokování napájení

Blokování napájení pomocí kondenzátoru patří spolu se zemnením k nejdůležitějším pravidlům, kterým je treba venovat pozornost u všech desek plošných spojů. Nutnost použití blokovacích kondenzátorů vyplývá z faktu, že „každý jiný napájecí zdroj se nachází elektricky příliš daleko od spotrebice“.

Predstavíme-li si například, že:

- **impulzní spotreba** bežného hradla HCMOS je podle tabulky 5.1 15 mA po dobu 3,5 ns,
- **zpoždění pruchodu signálu** na plošném spoji (a tedy i napájecího proudu) podle vztahu (4.40) a dalších nemůže být nižší než 0,1 ns/cm,
- **standardní stabilizátor napetí** (například 7805) má reakční dobu na skokovou změnu spotřeby v rádu jednotek μs, nezbývá nám nic jiného, než takovému hradlu poskytnout napájení z velmi blízkého a pohotového zdroje, kterým nemůže být nic jiného, než **blokovací kondenzátor**.

Navíc napájení po elektricky dlouhých vodicích vytváří na jejich parazitních indukcnostech nežádoucí úbytek napetí, způsobuje nadměrné vyzaravání elektromagnetické energie díky velkým plochám smyček a tím vším drasticky snižuje odolnost zarízení. Velmi často dokonce zarážení bez blokovacích kondenzátorů není schopné správné funkce. To se projevuje nepřípustným zvlněním napájecího napetí, průříšními úbytky napetí na společném vodicí (toto napetí se scitá s užitněným signálem!), hazardními stavů cíclových obvodu, nadmerným šumem a sklonem ke kmitání u analogových obvodu, zpetným vyzaraváním do napájecích vodicu...
Co do funkce rozlišujeme tri druhy blokovacích kondenzátoru:

1. **Filtracní** (bypassing) – slouží jako širokopásmový filtr pro napájení celé desky nebo její části, eliminuje vliv indukčnosti prívodu od napájecího zdroje, kontaktních prechodových odporů napájecích konektoru atd.

2. **Lokální** (decoupling) – slouží jako lokální zdroj energie pro součástky a redukuje impulzní proudy, které by jinak protékaly celou deskou (například impulzní proud I_p z obrázku 5.7).

3. **Skupinový** (bulk) – slouží jako zdroj energie pro soucasné nabíjení několika kapacitních září (například impulzní proud I_L z obrázku 5.7).

Na modelové desce, napájené ze vzdáleného adaptéru a obsahující mikroprocesor s podpurnými logickými obvody, budeme tedy mít konfiguraci všech tří druhu blokovacích kondenzátorů (obrázek 6.6). Upozornuji, že hodnoty kapacit, uvedené v dalším popisu jsou pouze orientační.

![Obr.6.6: Príklad blokování.](image)

Ad 1: Vstupní konektor musí být opatren filtracním kondenzátorom. Zpravidla se používá elektrolytický kondenzátor, ke kterému se připojuje paralelně keramický kondenzátor (C_1, C_2). Elektrolytický kondenzátor má vysokou kapacitu, ale špatné vysokofrekvenční vlastnosti, takže se s keramickým kondenzátorem vhodně doplňují. Tyto kondenzátory musí být umístěny na ceste mezi napájecím konektorem a ostatními obvody. Další filtracní kondenzátor se musí umístit na nejvzdálenějším místě od napájecích svorek (C_8). Zamezí se tím impulzním proudům pres celou desku. Kapacity kondenzátoru se pohybují v ráduch C_1 a $C_8 \sim 10..1000 \mu F$, pricemž $C_1 > C_8$, keramický kondenzátor $C_8 \sim 0,01..0,1 \mu F$.

Upozornění: Použití vývodového kondenzátoru 100nF (M1) pro blokování cívicových obvodů může být Hrubá Návrhářská Chyba (bude popsáno dále).

Ad 2: Každý integrovaný obvod nebo obecne každé dílce zapojení, které se vyznačuje impulzní spotřebou (tranzistor + relátko, klopobý obvod, zesilovací stupen...) musí mít svůj lokální kondenzátor ($C_4 až C_7$). Na tyto kondenzátory jsou kladeny náročné požadavky co do vysokofrekvenčních vlastností. Je nutné je umístit as nejbližši ke materské součástci ci obvodu a zároveň při návahu spoju dodržet minimální plochu proudové smyčky mezi tímto kondenzátorem a napájecími svorkami obvodu. Hodnoty jejich kapacity se pohybují v rádu 100pF .. 0,1 μF.

Ad 3: Mikroprocesor navíc bude mít jeden skupinový kondenzátor (C_9), nebot ze svých výstupu řídí najednou nekolik dalších hradel. Zpravidla se pro tyto účely používají elektrolytické tantalové kondenzátory s kapacitou v rádu 1..10 μF. Pro umístění skupinového kondenzátoru platí stejná pravidla jako pro lokální kondenzátor.
6.4.1. Reálný kondenzátor

Náhradní obvod reálného kondenzátoru se neskládá pouze zkapsit, nýbrž má navíc svoji parazitní indukcnost a odpor (prívodu). Znamená to tedy, že se jedná o LCR obvod, který bude mít vlastní rezonancí kmitocet (self resonance) \(f = 1/\sqrt{LC} \). Pro kmitocet pod vlastní rezonancí bude v impedanci kondenzátoru prevládat kapacitní složka a pro kmitocet nad vlastní rezonancí potom induktivní složka. Pri výběru vhodných blokovacích kondenzátorů tedy musíme sledovat práve katalogový údaj vlastní rezonance a používat vždy kondenzátoru, jejichž vlastní rezonance je vyšší než nejvyšší kmitocet na plošném spoji, priciemž rozhodující není délka trvání impulzu ci jeho perioda, nýbrž jejich násobky a dále kmitocety, odpovídající nábežným (1/pt) a sestupným hranám (1/pt).

![Obr.6.7: Reálný kondenzátor.](image1)

Obr.6.7: Reálný kondenzátor.

6.4.2. Plošný spoj jako blokovací kondenzátor

Jestliže budeme potrebovat zároveň vysokou hodnotu kapacity i rezončního kmitocetu, můžeme spojit paralelně nekolik kondenzátorů. Jako blokovací kondenzátor můžeme použít těž vícevrstvý plošný spoj, budou-li v jeho vnitřních vrstvách vedle sebe umísteny vodivé plochy napájení a společného vodíce (GND). Kapacita takového kondenzátoru se dá vypočítat podle vztahu (4.6) a pohybuje se v rámě jednotek nF na 1 dm². Taková velikost kapacity nebývá dostatečná, a proto se používá jako doplnek ke kondenzátorům za účelem snižení impedancí díky svému velmi vysokému rezonancnímu kmitocetu, který se podle [10] pro materiál FR4 pohybuje v rozmezí 200–400 MHz. Pozor na dodržení pravidla 20–H (obrázek 6.2)!!!

Použití plošného spoje jako „rozprostřeného“ lokálního blokovacího kondenzátoru reší najednou tyto problémy návrhu:

![Obr.6.8: Vlastní rezonancí kmitocet a oblast použití jako lokální kondenzátor [10].](image2)

Obr.6.8: Vlastní rezonancí kmitocet a oblast použití jako lokální kondenzátor [10].

Na obrázku 6.8 je znázornena kmitocetová závislost impedance (minimum=vlastní rezonancí kmitocet) pro typické lokální blokovací kondenzátor v provedení s vývody a SMD. Z obrázku je vidět, že vývodový keramický kondenzátor 100 nF má rezonancí kmitocet tak nízký, že jej nelze použít ani k blokování nejvíce pomalejšího typu císlicového obvodu (CMOS). Uvedené grafy ovšem neuváží parazitní indukcnost plošných spojů mezi príslušnou součástkou a jejím kondenzátorom, která rezonancí kmitocet ještě dále sníží.
• Minimalizace plochy proudové smyčky napájení a ostatních spojů.
• Vysoký rezonanční kmitočet blokovacích kondenzátorů.
• Nízká parazitní indukce průvodu napájení mezi integrovaným obvodem a jeho lokálním kondenzátorom.

6.4.3. Návrh lokálního blokovacího kondenzátoru.

Jak již bylo uvedeno, lokální kondenzátor je určen k pokrytí impulzní spotřeby obvodu. Jeho kapacitu je možné vypocítat z jednoduchého vztahu:

$$C = \frac{I}{\Delta U} \left[F \right]$$

(6.1)

kde I predstavuje impulzní proudovou spotřebu obvodu I_p (obrázek 5.7 a tabulka 5.1), ΔU je změna napětí, kterou připustíme po dobu proudového impulsu I_p (zpravidla maximálně 20% šumové imunity obvodu), Δt je doba trvání proudového impulsu (odpovídá nábežné nebo sestupné hrane t_r a t_f).

Tabulka 6.1: Kapacita lokálního kondenzátoru na jedno hradlo vybraných logických rad.

<table>
<thead>
<tr>
<th>typ logiky</th>
<th>impulzní spotreba [mA]</th>
<th>doba preklapení [ns]</th>
<th>šumová imunita [V]</th>
<th>kapacita na 1 hradlo [nF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>16</td>
<td>8</td>
<td>0,4</td>
<td>1,6</td>
</tr>
<tr>
<td>S</td>
<td>30</td>
<td>2,5</td>
<td>0,4</td>
<td>0,9</td>
</tr>
<tr>
<td>LS</td>
<td>8</td>
<td>5</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>F, A5</td>
<td>15</td>
<td>2,5</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>CMOS 5V</td>
<td>1</td>
<td>70</td>
<td>1,2</td>
<td>0,3</td>
</tr>
<tr>
<td>CMOS 12V</td>
<td>1</td>
<td>25</td>
<td>3,0</td>
<td>0,1</td>
</tr>
<tr>
<td>HCMOS</td>
<td>15</td>
<td>3,5</td>
<td>0,7</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Renomování výrobce v katalogových nebo aplikacních listech svých součástek uvádí doporučený způsob blokování napájení (včetně velikostí kapacit kondenzátoru).

6.4.4. Návrh skupinového blokovacího kondenzátoru

Skupinový blokovací kondenzátor je, podobně jako lokální kondenzátor určen k pokrytí impulzní spotreby. Tentokrát se ovšem jedná o proudové impulzy, které vznikají při soucasnému prebíjení nekolika vstupních kapacit. Proto se tyto kondenzátory navrhuji pouze k tem soucástkám, které řídí mnoho jiných obvodů (například k mikroprocesorům). Hodnotu jejich kapacity je možné určit opět z vztahu (6.1) s tím rozdílem, že za I musíme dosadit proud, potřebný pro nabíti vstupních kapacit (I_L z obrázku 5.7). Tento proud mužeme orientace zjistit ze vztahu:

$$I_L = C_L \frac{\Delta U_{CL}}{\Delta t} \left[A \right]$$

(6.2)

kde C_L je celková zatežovací kapacita, která se sestává jednak ze vstupních kapacit různých obvodů a jednak z parazitní kapacity plošného spoje, ΔU_{CL} je napetový rozkmit na kapacitní záteži C_L (zpravidla se za ΔU_{CL} dosazuje napájecí napětí), Δt je doba preklapení (nábežná nebo sestupná hrana t_r a t_f).

6.4.5. Návrh filtrací kondenzátoru

Filtrací kondenzátor slouží jako zdroj energie, eliminující vliv impedance průvodu od napájecího zdroje k plošnému spoji (indukcnost, prechodový odpor kontaktu...). Tím omezují impulzní proudy, které by jinak tekly napájecími průvody a zpustochovaly by neakceptovatelné úbytky napětí a dále neprípustné vyzarování. Přesné určení velikosti kapacity filtracního kondenzátoru je dosti obtížné a zpravidla je nutné se spolehnout na zkušenosti návrháře.
1. Základní problém je určení velikosti proudového odboru I_{CC}. Zpravidla se postupuje tak, že se sectou všechny proudy typu I_p a I_L, tedy odhadne se vlastní impulsní spotreba všech obvodu na plošném spoji a přičte se k nim proud, tekoucí do obvodu mimo navrhnovaný plošný spoj.

2. Dále je nutné určit průpustné zvlnění (šum) napájení U_{CC}, které u cífcových obvodu predstavuje cást šumové imunity (například 20%), u analogových obvodu souvisí s průpustným šumem na vstupu resp. výstupu...

3. Vypočteme maximální průpustnou velikost impendance napájecího systému jako pomerní hubovatelného zvlnění napájení a celkového odboru proudu:

$$ Z_{PWR} = \frac{\Delta U_{CC}}{\Delta I_{CC}} \quad [\Omega] \quad (6.3) $$

4. Provedeme-li zjednodušující úvahu, že tato impedance se skládá pouze z parazitní indukcnosti prívodu napájení L_{PSW} a kapacity filtracního kondenzátoru C_{PWR}, můžeme napsat:

$$ Z_{PWR} = \frac{L_{PSW}}{C_{PWR}} \quad \text{tedy} \quad C_{PWR} = \frac{L_{PSW}}{Z_{PWR}^2} \quad [F] \quad (6.4) $$

Pro výpočet indukcnosti prívodu napájení mezi zdrojem a plošným spojem L_{PSW} mužeme využít například vztahy (4.17) až (4.29). Ve vetšine bežných případů se tato indukcnost pohybuje v rádu 10 nH/cm.

Výše uvedená konstrukce výpoctu slouží pouze pro určení rádu hodnoty kapacity. Takto vypočtenou hodnotu kapacity C_{PWR} vynásobíme koeficientem „zkušenostní návrháře“, který zpravidla nebyvá menší než 10.

U citlivých a presných zarízení je nutné velikost filtracní kapacity, prípadně všech typu kapacit, potvrdit zkušebním merením zvlnění napájení a overením správné funkce zarízení.

6.4.6. Umístění blokovacích kondenzátorů na plošném spoji

Obr. 6.9: Typické problémy umístění blokovacích kondenzátorů.

Pro všechny typy blokovacích kondenzátorů platí srovnatelná pravidla pro jejich správné umístění a s tím související vedení spoju (obrázek 6.9 a 6.10).

- Kondenzátor musí být umístěn vždy na ceste mezi zdrojem a spotrebicem.
- Veškeré spoje musí být navrženy tak, aby plocha proudových smycek byla co nejmenší.
- Minimalizace impedancí spoju (predevším parazitních indukcností L_1 až L_4 obrázek 6.9 c) a d) = co nejkratší spoje, použití vodivých ploch.
- Proudové smycky zdroj – kondenzátor \((I_1)\) a kondenzátor – spotrebic \((I_2)\) by měly mít minimální společnou spojovou dráhu. Chybne navržené vedení spoju na obrázku 6.9 a) způsobí rušivé úbytky napetí na parazitních indukcnostech \(L_3\) a \(L_6\).

Na obrázku 6.10 a) jsou vidět nejfrekventovanější chyby při návrhu blokování. Predevším je zde chybne umístěný lokální kondenzátor \(C_2\), všechny plochy proudových smycek jsou extrémně velké a spoj GND má chybne vedený spoj mezi \(C1\) a \(IO1\).

Obr. 6.10: Nejcastejší chyby při návrhu blokování.

Vysvětlete si ještě na příkladu vliv parazitních indukcností a odporu v situaci chybne navržené kombinace lokálního kondenzátoru a integrovaného obvodu (obrázek 6.11). Blokovací kondenzátor C umístíme zhruba 5 cm od integrovaného obvodu, címž vznikne celkem cca 15 cm dlouhý spoj. Takové konfiguraci bude odpovídat náhradní schéma s celkovou parazitní indukcností spoju 150 nH a odporem 75 mOh. K tomu je nutné dále připočítat parazitní vlastnosti kontaktních prívodu na cip (2 x 4nH/1mOh) a parazitní indukcnost vývodu kondenzátoru (2 x 3 nH). Vypočteme, jaký bude úbytek napetí na parazitním odporu a indukcnosti. Predstavme si, že onen integrovaný obvod je mikroprocesor HC 11, který má impulzní spotrebu 0,1A/10ns.

Obr. 6.11: Vliv parazitního odporu a indukcnosti při blokování napájení.

Úbytek na parazitním odporu:

\[
U_R = R \cdot I = 77\cdot10^{-3} \cdot 0,1 = 7,7 \text{ [mV]} \tag{6.5}
\]

Úbytek na parazitní indukcnosti:

\[
U_L = L \cdot \frac{dI}{dt} = 164 \cdot 10^{-9} \cdot \frac{0,1}{10 \cdot 10^{-9}} = 1,64 \text{ [V]} \quad !!! \tag{6.6}
\]

Z výpočtu je vidět, že vliv parazitního odporu je zanedbatelný, ale vliv parazitní indukcnosti plošného spoje způsobí špatnou funkci zapojení, nebot úbytek \(U_L\) nekolikanásobně presahuje povolenou toleranci napájecího napetí (±250 mV) i šumovou imunitu (0,9V). Uvedenou situaci je nutné rešit podlištím spoju vodivou plochou (=snížení indukcnosti na \(1/2\)) a posunutím kondenzátoru bezprostredně k HC11 (nejlépe SMD z druhé strany desky prímo pod HC11).
6.5. Napájecí zdroje

Princip funkce usmernovací s filtrem je všeobecně známý, takže si všimneme pouze nektých nejdůležitějších momentů návrhu. Na obrázku 6.12 a) je nakresleno jeho základní schéma. Z hlediska správného návrhu spoje je důležité dodržet následující pravidla:

- Plochy smyček jednotlivých proudu I₁, I₂, IN a IC musí být co nejméně.
- Síťové svorky 1 a 1’, vypínac, pojistka a svorky primárního vinutí transformátoru by měly být fyzicky lokalizovány v jedné části přístroje blízko sebe. Není vhodná varianta, kdy svorky, pojistka a transformátor jsou v zadní části přístroje a vypínac na predním panelu.
- Pozor na izolacní vzdálenosti všech spoju primárního obvodu a též vzdálenost mezi prvky primárního a sekundárního obvodu.
- Layout spoju kondenzátoru CN musí být navržen podle obrázku 6.12 e). Jejme na paměti, že proud IN je impulzní povahy a jeho amplituda nekolikanásobně prevyšuje hodnotu stejnosmerného IZ. Stejná pravidla platí i pro kondenzátory RC a LC filtru z obrázku 6.12 b) a c).
- Kondenzátor C₁D, premost ující diody D₁ a D₄, se používá pouze v případě, že zdroj má velmi malý odber (velký Rₓ). V tom případě je totiž úhel otevření diod velmi malý a tomu odpovídající proudové impulzy IN by mohly způsobovat nežádoucí rušení. Kondenzátor C₁D sniží velikost impulzu IN a prodlouží dobu jeho trvání (C₁D<< CN).

Obr.6.12: Usmernovací, filtry a layout přívodu spoju ke kondenzátoru.

6.5.1. Analogové stabilizátory

Typickým predstavitelem analogového stabilizátoru je obvod 7805 – trísívorkový stabilizátor napětí 5V/1A a L200, petisívorkový stabilizátor, který je obdobou 7805 s možností regulace napětí a proudového omezení. U všech obvodu tohoto typu platí, že se musí patřicne „ovesit“ kondenzátory. Zároveň je nutné dodržet správný layout spoju.

stabilizátoru teprve zacíná reagovat na zmenu výstupního napetí, způsobenou zmenou odboru proudu proudu \(I_2 \). Jeho hodnota se dá určit ze vztahu (6.1), kde za \(I \) dosadíme velikost odboru, za \(U \) velikost zvlnění, které připustíme, a za \(t \) dobu odezvy stabilizátoru na zmenu odboru (obrázek 6.13 c). Pro impulzní odbor 1 A při požadovaném zvlnění 10 mV a při \(t=3 \mu s \) bude \(C_s = I \cdot t/\Delta U = 330 \mu F \).

Svorka GND stabilizátoru má soucasne dve funkce. Jednak ji protéká klidový proud \(I_0 \) (=napájecí proud stabilizátoru) v rádu jednotek mA, a zároveň je to merící svorka výstupního napětí (jejího záporného pólů). To znamená, že naší snahou je zapojit ji co nejbližší záteži (obrázek 6.13 a).

Dioda \(D \) chrání stabilizátor pro případ, že při zkratu na vstupu (\(U_1 \)) bude \(U_2 > U_1 \), což je pro stabilizátor neprípustný režim. Z hlediska návrhu plošných spojů ovšem nejsou pro zapojení této součástky kladeny žádné závažné požadavky.

\[C_4 = \frac{I \cdot t}{\Delta U} = 330 \mu F. \]

Svorka GND stabilizátoru má soucasne dve funkce. Jednak ji protéká klidový proud \(I_0 \) (=napájecí proud stabilizátoru) v rádu jednotek mA, a zároveň je to merící svorka výstupního napětí (jejího záporného pólů). To znamená, že naší snahou je zapojit ji co nejbližší záteži (obrázek 6.13 a).

Dioda \(D \) chrání stabilizátor pro případ, že při zkratu na vstupu (\(U_1 \)) bude \(U_2 > U_1 \), což je pro stabilizátor neprípustný režim. Z hlediska návrhu plošných spojů ovšem nejsou pro zapojení této součástky kladeny žádné závažné požadavky.

Obr. 6.13: Zapojení stabilizátoru a vliv kondenzátoru na stabilizaci napětí při impulzní záteži.

6.5.2. Spínané zdroje

S rozvojem spínacích součástek se rozširují možnosti využití spínaných zdrojů. Pri jejich realizaci je ovšem nutné venovat maximální pozornost práve návrhu plošných spojů. Na obrázku 6.14 jsou uvedeny dva nejrozšířenější principy spínaných zdrojů s transformátorem a indukncostí. Pracovní kmitocet se pohybuje zhruba okolo 100 kHz a jednotlivými proudovými smykami tecou znatě proudy. Pri chybném návrhu spojů může docházet k neprípustnému vyzarování elektromagnetického rušení a k nadmernému zvlnění výstupního napětí.

Obr. 6.14: Pravidla pro návrh spínaných zdrojů.

Pri návrhu rozmístění součástek a vedení spoju **spínaného zdroje s transformátorkem** (obrázek 6.14 a) je nutné dodržovat predevším tyto zásady:

- **Minimalizace plochy všech proudových smyků** \(I_1, I_2, I_3 \) správným rozmístěním součástek i vedení spojů. Na vyzarování má nejvitší podíl proudová smycka \(I_2 \).
- **Výstupní napětí** \(U_2 \) má být vyvedeno z bodu, které se nacházejí bezprostredně u vývodu kondenzátoru \(C_2 \). Eliminují se tak rušivé úbytky napětí, vznikající na parazitních indukcnostech spoje. Jelikož i kondenzátoře mají svou parazitní indukncost a odpor, používá se zpravidla paralelní zapojení vetšího poctu kondenzátorů.
- **Pri návrhu je duležité dodržet vzájemné izolaci vzdáleností všech součástek a spoju mezi primární a sekundární cástí obvodu.**

[Diagram]
Při návrhu rozmístění součástek a vedení spoju
spínaného zdroje s indukností (obrázek 6.14 b) je nutné dodržovat predevším tyto zásady:

- Minimalizace plochy proudové smyčky \(I_2 \) správným rozmístěním součástek i vedením spoju.
 - Pri sepnutí tranzistoru v integrovaném obvodu začne obvod \(L-C \) proud \(I_1 \). Po vypnutí tranzistoru ve smyčce \(D_1 \) (smyčka \(I_2 \)) v puvodním výšší. To znamená, že v okamžiku vypnutí tranzistoru dochází k proudovému skoku \(I_2 \) z nulové hodnoty na maximální.

- Výstupní napětí \(U_2 \) má být opět vyvedeno zbodu, které se nacházejí bezprostredně u vývodu kondenzátoru \(C_2 \). I zde se často používá paralelní zapojení vetšího poctu kondenzátor.

- Společný vodic \(Gnd \) integrovaného obvodu včetně všech podpurných obvodů (\(C_T \), snímací svorku Sense a delic \(R_1-R_2 \) je nutné zapojit co nejblíže k východním svorkám, respektive k záteži. Jejich propojení je nutné provést v souladu s obr. 6.14 b).

- Jako induknost \(L \) musí být použita cívka, která má minimální rozptyl magnetického toku do okolí, tedy například toroid. Rozhodne není vhodné použít válcovou cívku.

V obou zapojení se doporučuje za výstup \(U_2 \) zapojit ještě LC filtr (například \(1 \mu H, 100\mu F \)) s návrhem layoutu ve smyslu obrázku 6.12 c).

6.6. Císlícové obvody

Popsat bezezbytku veškerá konkrétní pravidla pro návrh plošných spoju císlicových obvodu by bylo dosti vysílající. Zacneme tedy z obecného hlediska. Aby navrhované elektronické zarizení pracovalo bezchybně, bylo odolné vůči vnějšímu rušení a samo nevyzarano, musíme dodržet následující požadavky:
1. Minimalizace impulzních proudu.
2. Minimalizace ploch proudových smycek.
3. Minimalizace vyšších složek kmitoctového spektra.
4. Zachování nejvyšší šumové imunity.

6.6.1. Pravidla související s návrhem schématu

Minimalizace impulzních proudu:
- Co nejmenší pocet synchronne prepínanych hradel.
- Výber vhodné logické rady z hlediska vstupních kapacit a impulzní proudové spotreby.
- Vhodné blokování – výpocet hodnoty blokovacího kondenzátoru a výber jeho hodnoty a typu individuální pro každou součástku na základě znalostí režimu její činnosti (=vlastní impulzní spotreba, šumová imunita, zatížení výstupu, rezonancní kmitocet kondenzátoru).
- Ošetření nepoužitých vstupu (v souladu s doporučeními výrobcu součástek).

Minimalizace ploch proudových smycek:
- Vhodná koncepce sběrnic a napájení (vcetne rozložení pinu na konektorech).
- Využití SMD součástek (jsou menší než součástky s pruchozími vývody).
- Výber součástek napájecí vývody proti sobe (obrázek 5.6) – možnost blokování napájení SMD kondenzátorem zespodu přímě v místě napájecích vývodu.
- Výber vhodných typu blokovacích kondenzátoru z hlediska možností jejich umístění u materských součástek a způsobu jejich vzájemného propojení.
- Nepoužívat patice u velmi rychlých součástek (obrázek 6.15).

Minimalizace vyšších složek kmitoctového spektra:
- Nepoužívat zbytecne rychlé součástky a rady logických obvodu (tabulka 5.1).

Obr.6.15: Vliv patic.
• Návrh vhodného systému prenosu dat (sériový, paralelní, rychlost prenosu...).

Zachování co nejvyšší šumové imunity:
• Impedancní prizpůsobení dlouhých spojů.
• Blokování napájení za účelem udržení co nejmenšího zvlnění napájení.
• Nepoužívat zbytečně rychlé součástky a rady logických obvodů (tabulka 5.1).
• Nezpracovávat vstupní/výstupní signály s jinými, nesouvisejícími (například hodinami), v jednom integrovaném obvodu (není-li k tomu určen).

6.6.2. Pravidla související s návrhem rozmístění součástek a vedení spoju
• Správné razení vrstev plošného spoje – pro císlicové obvody je vhodné použít vícevrstvé desky plošných spojů (tabulka 6.1). Vnitřní vodivé plochy GND a Vcc vytvářejí blokovací kondenzátor s vysokým rezonancním kmitočtem, snižují parazitní indukčnost signálových spojů a vubec predstavují nízkoimpedancní rozvod napájení i společného vodidla. Pozor na pravidlo 20–H a syndrom „švýcarského sýru“!

Obr.6.16: Nouzové rešení napájení císlicových obvodů pri absenci vodivé plochy GND.
• Rozmístění součástek je nutné provést tak, aby signálové spoje byly co nejkratší.
• Pri dlouhých paralelních signálových spojích je nutné mít na paměti nebezpečí preslechu. Literatura [5] uvádí maximální délku paralelně vedených signálových spojů (ve třídě presnosti 4) pro obvody rady TTL a LS 25 cm, S, F, AS 15 cm, HCMOS 13 cm, prípadně ze vztahu pro vzájemné kapacity a indukčnosti vyplývá, že tato vzdálenost musí být vyšší v případě vetší vzájemné vzdálenosti signálových spojů, podložení signálových spojů vodivou plochu společného vodidla, prípadně vrazení společného vodidla přímo mezi signálové spoje.
Všechny spoje by mely být vedeny pod úhlem 45°. Pri vedení pod úhlem 90° dochází k podleptání rohu, což má za následek zmenu impedance která může být príčinou vzniku odrazu.

6.7. Obvody hodinových impulzu

Obvody hodinových impulzu generují zpravidla prouby napetí (resp. proudu) s nejvyšším kmitočtem i nejvíce nábežnými i sestupnými hranami zcelého elektronického obvodu. Dá se tedy ráci, že mohou být největším zdrojem rušení na celém plošném spoji. Proto je treba tento obvod venovat maximální pozornost. Nejdůležitější zásadou je minimalizace plochy proudových smyček.

- Součástky musí být rozmísteny tak, aby spoje mezi nimi byly co nejkratší.
- Zároveň platí pravidlo dusledné fyzické separace techto součástek a jejich spoju od ostatních obvodů, predevším od vstupní/výstupních. Hrozí totiž možnost jejich vzájemného vazby, a tedy neprípustné vyzarovačování do kabeláže, prípadne naopak – špatnou funkci rychlých obvodů hodin. Literatura [9] uvádí, že obvody hodin, pracující s nábežnými hranami 10 ns, by mely být vzdáleny od vstupní/výstupních obvodů 5 cm a při hrane 5 ns až 7 cm.
- Součástky mají být vkládány přímo do plošného spoje bez patic (obrázek 6.15).
- Na plošném spoji může být ze strany součástek v celé oblasti, kde se nacházejí součástky hodin, vytvořena lokální vodivá plocha GND (= minimalizace ploch proudových smyček). Tato plocha musí být připojena pomocí nekolika prokov na společné napájecí zemi ve vnitřní vrstvě plošného spoje, případně pomocí šroubku kontaktována na šasi přístroje (obrázek 6.17 a).
- Lokální plochou GND nesmí vést „žádné signálové spoje (neplatí pro 2–vrstvé spoje).
- Všechna kovová pouzdra součástek musí být připojena k lokální GND.
- Signálové spoje se potom vedou v nejblížší části plošného spoje. U 4 a 2–vrstvých desek tedy až ze strany spoju.
- Oblastí hodinových obvodů nesmí v žádné vrstvě procházet nesouvisející spoje.
- Pri propojování je treba udržovat nízkou a hlavne konstantní impedance spoje. Toho lze docílit jednak vedzením spoje pod úhlem 45°, a to pouze nad lokální vodivou plochu, připojenou ke společnému vodici, a dále pomocí takzvaných ochranných paralelních spoje (bude popsáno dále).
- Pri návrhu spoje je nutné zohlednit konečnou rychlost šíření signálu po plošném spoji, vcetne vlivu kapacitní zátěže.
- Velkou pozornost je treba venovat filtraci a blokování napájení.
- U konektoru, vedoucích signál hodin mimo desku plošného spoje, je nutné zakončit hodinový spoj průsmyku.

6.7.1. Ochranné paralelní spoje

Jedná se o spoje, kterými se obklápí kritické signálové spoje a které jsou na nekolika místech připojeny pomocí prokou na vrstvu GND (obrázek 6.17 b). Takové obklopení se částečně chová jako koaxiální kabel, tedy sníží riziko preslechu, sníží úroveň vyzarovačování a při správném návrhu zabezpečí presnou a hlavne konstantní impedance kritického signálového spoje. Samozřejmě se predpokládá kvalitní podložení celé délky kritického spoje vodivou plochou GND v bezprostředním nejbližším počátku plošného spoje.

Konkrétní příklad návrhu spoje hodin pro M68HC11 je na obrázku 6.17 c). Je videt, že díky vhodnému rozmístění součástek jsou signálové spoje vedeny co nejtešněji u sebe a nevytvářejí žádné velké plochy smyček. Navíc jsou obklopeny společným vodicem, takže budou oddeleny od ostatních okolních spojů.
Obr. 6.17: Uspořádání lokální země a) ochranné paralelní spoje b), příklad návrhu c).

6.7.2. Odrazy na vedení a jejich potlacení

Plošné spoje, stejno jako každé jiné elektrické vodice, mají svou impedanci a signál se jimi šíří konečnou rychlostí. Tyto vlastnosti byly rozebrány v samostatné kapitole. Při prenosu strídavého signálu vlnovou délkou podstatně ve štětí než je mechanická délka spoje, jsou impedance i zpoždení pruchodu signálu zanedbatelné a nemusíme se jimi zabývat. Je-li ovšem délka spoje srovnatelná s vlnovou délkou prenášeného signálu nebo dokonce delší, musíme na takové spoje nalézt jako na vedení s rozprostřenými parametry a impedanci a rychlost šíření signálu uvažovat. Potom hovoříme o elektricky dlouhých spojích.

Obr. 6.18: Typická prenosová soustava a odrazy na vedení.

Systém prenosu signálu musíme nakreslit jako soustavu, která má zdroj signálu s výstupní impedancí \(Z_S \), vedení \(Z_0 \) a zátež \(Z_L \) (obrázek 6.18 a). Taková soustava prenese ze zdroje do záteže nejvyšší výkon tehdy, bude-li \(Z_S = Z_0 = Z_L \). Zároveň v takové situaci nebude docházet k odrazu. K tomu totiž dochází v místech se zmenou impedance. Z toho plynou pro návrh plošných spojů dve základní myšlenky:

- Pri návrhu schématu se u elektricky dlouhých spojů musíme snažit vhodným výborem součástek a jejich elektronickým zapojením udržet rovnost impedancí zdroje signálu \(Z_S \) a záteže \(Z_L \) s prepokládanou impedancí spoju \(Z_0 \).
- Pri návrhu plošného spoje dodržet požadovanou impedanci \(Z_0 \) konstantní.

Impedance plošného spoje je více než délá technologickými možnostmi výroby a máme možnost ji při bežných návrzích na materiálu FR4 nastavit vhodnou konfiguraci rozmeru a vrstev v rozmezí 50 až 200 \(\Omega \) (obrázek 4.8 a vztahy 4.31 až 4.37). To tedy znamená, že při návrhu schématu je nutné pro elektricky dlouhé spoje navrhovat impedanci prizpůsobení, a to jak na straně zdroje, tak na straně záteže.

Nebezpečí odrazu na neprizpůsobeném vedení je videt z obrázku 6.18 b). Pri zmene z logické „0“ do „1“ se na konci neprizpůsobeného vedení muže odražený impuls odečíst od práve nastavené logické úroveň. Jsou-li navíc přijímací obvody zapojeny tak, že vysílač obvod (A) rídí zároveň jeden přijímací obvod bezprostredně (C) a druhý přes vedení (B), muže odraz vzniknout na konci vedení po svém návratu na začátek vedení představovat pro přijímací obvod (C) další impuls, který je nežádoucí. Obdobné je tomu i u prechodu „1“ do „0“. Z výše uvedené situace lze jednoduše určit pravidlo pro určení délky spoje, který musí být impedanci prizpůsobený:

Je-li dvojnásobek zpoždění pruchodu signálu vešší, než trvání jeho nábežné nebo sestupné hrany, je nutné spoj impedanci prizpůsobit.

- 71 -
Pro maximální délku neprizpůsobeného spoje L_{max} tedy platí:

$$L_{\text{max}} = \frac{t_S}{2 \cdot t_{\text{pd}}} \quad (6.7)$$

disque t_S je menší údaj známebné a sestupné hrany impulzu (t_r, t_f) a t'_{pd} je zpoždění pruchodu signálu vedením s kapacitní záteží (vztah 4.45).

Příklad: Máme spoj 10 cm dlouhý, zatížený 8 hradly HCMOS. Je nutné zakončení? Spoj bude proveden dvoustranné ve tride presnosti 5 na materiálu FR4 o tloušťce 1,5 mm.

Rešení: Budeme předpokládat, že pro tak rychlé obvody, jakými jsou HCMOS bude zespodu plošného spoje rozlitá med GND. Pro výpočty použijeme tedy vztahy, související s konfigurací plošného spoje z obrázku 4.8 e). Impedance takového spoje tedy bude pri $K_{L2}=1+1,5.h/w$ a $K_{C2}=1+h/w$ (vztah 4.35):

$$Z_0 = \frac{120 \cdot \pi}{\sqrt{K_{L2} \cdot K_{C2} \cdot \sqrt{\varepsilon_r}}} \left(\frac{h}{w}\right) = \frac{120 \cdot \pi}{\sqrt{12,25 \cdot 8,5 \cdot \sqrt{4,7}}} \cdot \left(\frac{1,5}{0,2}\right) = 127 \quad \Omega$$

Zpoždění pruchodu signálu bez kapacitní záteže t_{pd} bude (vztah 4.44):

$$t_{\text{pd}} = 3,33 \cdot 10^{-9} \cdot \sqrt{\varepsilon_r} \cdot \sqrt{\frac{K_{C2}}{K_{L2}}} = 3,33 \cdot 10^{-9} \cdot \sqrt{4,7} \cdot \sqrt{\frac{8,5}{12,25}} = 6.10^{-9} \quad [s/m]$$

Zatežovací kapacita C_d/l bude pro 8 vstupu HCMOS pri vstupní kapacitě jednoho hradla 4 pF (tabulka 5.1) 32 pF na 10 centimetrech našeho spoje, tedy 320 pF/m. Kapacita plošného spoje na jednotku délky bude (vztah 4.12):

$$\frac{C}{l} = \varepsilon_0 \cdot \varepsilon_r \cdot K_{C2} \frac{w}{h} = 8,810^{-12} \cdot 4,7 \cdot 8,5 \cdot 0,2 \div 1,5 = 46,9 \cdot 10^{-12} \quad [F/m]$$

Zpoždění pruchodu signálu kapacitné zatíženého vedení t'_{pd} tedy bude (vztah 4.45):

$$t'_{\text{pd}} = t_{\text{pd}} \cdot \sqrt{1 + \frac{C_d}{C/l}} = 6.10^{-9} \cdot \sqrt{1 + \frac{320}{46,9}} = 16,8 \cdot 10^{-9} \quad [s/m]$$

Maximální délka nezakonceného spoje L_{max} při $t_r=t_f=3,5$ ns (tabulka 5.1) potom bude:

$$L_{\text{max}} = \frac{t_S}{2 \cdot t_{\text{pd}}} = \frac{3,5 \cdot 10^{-9}}{2 \cdot 16,8 \cdot 10^{-9}} = 10,4 \quad [cm]$$

Spoj tedy nebude nutné impedancně prizpůsobovat.

Obr.6.19: Způsoby impedancního prizpůsobování.

Na obrázku 6.19 jsou uvedeny základní způsoby impedancního prizpůsobování výstupu i vstupu číslicových obvodu za předpokladu, že jejich výstupní odpor je menší a naopak vstupní odpor je vetší než impedance vedení Z_0.
• Sériové prizpoušebení (obrázek 6.19 a) se používá jako výstupní. Rezistor R_S musí být navržen tak, aby $R_S + R_i = Z_0$. Jeho hodnota odporu se typicky pohybuje v rozsahu 15 – 75 Ω, nejčasteji se používá hodnota 33 Ω.

• Paralelní prizpoušebení (obrázek 6.19 b) se používá ke snížení vstupní impedance. Zanedbáme-li velikost vstupního odporu hrádla, bude $R_F = Z_0$. Podle požadavku aplikace se tento rezistor pripouje buď na společný vodic nebo na napájení. Nevýhoda tohoto zpusobu zakončení je v tom, že príliš zvyšuje stejnosmerné proudové zatížení budícího obvodu.

• Theveninovo prizpoušebení (obrázek 6.16 c) je obdobou paralelního zapojení. Hodnoty odporu rezistoru R_1 a R_2 se volí tak, aby $R_1 || R_2 = Z_0$. Výhoda tohoto zapojení proti paralelnímu je v tom, že je možno nastavit pomer odporu podle zatížitelnosti budícího obvodu, které muže být jiný při logické nule a jiný při logické jednici.

• RC clánek (obrázek 6.19 e) je v hledisku zatížení budícího obvodu nejvhodnější zapojení. Hodnoty odporu rezistoru R_1 a R_2 se volí tak, aby $R_1 || R_2 = Z_0$. Výhoda tohoto zapojení proti paralelnímu je v tom, že je možno nastavit pomer odporu podle zatížitelnosti budícího obvodu, které muže být jiný při logické nule a jiný při logické jednici.

Zvolit při návrhu schématu správný zpusob prizpoušebení a určit presné hodnoty jeho součástek je zpravidla obtížné, a proto se u pokusných a vývojových zdrojů (D1, D2) a nižších je nulový potenciál spojovacího vodíku (D2).

Omezovac s diodami (obrázek 6.19 d) není impeodancí prizpoušebení v pravém slova smyslu. Toto zapojení pouze omezí napětové prekmity vyšší než je napájecí napětí (D_1) a nižší než je nulový potenciál spojovacího vodíku (D_2).

6.8. Analogové obvody

Problematika návrhu plošných spojů analogových obvodů je velmi rozsáhlá. Velkou pozornost je treba venovat již při návrhu schématu volby vhodného napájení, a to jak z hlediska stability napájecího napětí (casové, teplotní...), tak z hlediska zvlnění a rušení z napájecí sítě. V samotném analogovém obvodu je potom treba správně blokovat napájení, případně jej dále filtrovat mezi jednotlivými funkčními bloky.
Pri návrhu rozmístění součástek a jejich propojování je treba venovat velkou pozornost otázce preslechu. Ty mohou vznikat nejen kapacitní a induktivní vazbou, ale i galvanickou vazbou pri chyběm návrhu spoju napájení a hlavne společného vodice (zeme). Proto práve zemnění je u obvodu tohoto typu velmi chustivá záležitost. Na obrázku 6.21 jsou uvedeny dva nejcastejší příklady výkonových zesilovacu se symetrickým a nesymetrickým napájením. Schémata jsou na první pohled neprehledná a neusporádaná, ale to je tím, že je na nich znázornen zpoboz zemnění a pripojení napájení vctne správného zapojení blokovacích kondenzátoru. Tucnou carou je znázornena výkonová zem a je velmi duležité najit správné místo, kde kní bude pripojena nizkývkonová (vstupní) zem. Melo by to být takové místo, kde se nemuje stát, že se úbytek napetí na výkonovém zemním spoji secte se vstupním signálem a projeví se tak jako rušení (=galvanická vazba). Upozornuji, že i když záporná zpobca zemelice vychází z výkonového výstupu zemelice, musí být zemena do vstupní cásti zeme. V prípade, že bude vstupní cást napájena z dodatecne filtrovaného napájení, je nutné provést layout spoju dle pravidel z obrázku 6.12 b), c), e). Velmi duležité je též vhodně navrhnut rozmištění součástek tak, aby se v žádném případě nacházely vstupní cásti obvodu vedle výkonových (preslech). Znamená to tedy, že je dobré při návrhu rozmístění součástek na plošném spoji a umístění konektoru na hotovém zarízení dodržet geometrii odpovídající schématu – vstupní citlivá cást na jedné strane a výkonový výstup a napájení na strane protejší.

Obr.6.21: Propojování zemelice a) se symetrickým a b) s nesymetrickým napájení.

6.9. A/D prevodníky

Do analogové oblasti smejí vstupovat pouze spoje, nutné pro funkci analogového obvodu, tedy vstupní a výstupní signály, napájení, a to práve v místě premostení. Nikde jinde. Vedení spoju mimo premostení by znamenalo vznik nežádoucí proudové smyčky od zdroje signálu okolo príkopu pres premostení.

Obr. 6.22: Propojování analogové a císlicové části obvodu.

Na obrázku 6.23 b) je uveden příklad propojení analogové a císlicové zeme, je-li analogová i císlicová část tvorena pouze jedním integrovaným obvodem. Integrované A/D prevodníky mají totiž vývody analogové a císlicové části usporádané tak, aby je bylo možné jednoduše elektricky separovat. V takovém případě je vhodné dbát doporučení výrobce integrovaného obvodu, který obvykle v aplikacích listech uvádí správný způsob zeměnění.

Obr. 6.23: Rozmístění součástek A/D prevodníku a způsob zeměnění na plošném spoji.

Z předchozích obrázků je patrné, že je velmi důležitá též otázka napájení prevodníku a provedení propojení společného vodice (zeme). Optimálním řešením je samozřejmě použití nezávislých napájecích zdrojů pro analogovou a císlicovou část. V případě společného napájení je nutné provést alespoň jeho filtraci – zamezení šíření rušení z císlicové části do analogové.

Obr. 6.24: Příkłady propojení společného vodice (zeme) a napájení u A/D prevodníku.

Na obrázku 6.24 jsou vyobrazeny nekteré možnosti filtrace a propojení. Zapojení a) znázorňuje nejpoužívanější princip filtrace napájení. Nekdy (například u 8-bitových prevodníků) se tlumivka nahrazuje rezistorem. Části b), c) a d) znázorňují způsoby propojení císlicové a analogové zeme. Prípad b) se používá tehdy, mají-li být oba zeme galvanické propojeny. Není-li potřeba galvanického propojení zemí, používá se mezi analogovou a
digitální zemí filtrací tlumivka c). V případě, že rozdíl mezi potenciály analogové a cíclové země nesmí překročit určitou mez, vedení napětí a VCC je nutné odebírat z místa, které se nachází co nejbližším vnitřním kondenzátorem. Opat platí pravidlo, že konkrétní zapojení a hodnoty součástek je vhodné zjistit z katalogových listu použitých součástek.

6.10. Výkonové spínací obvody

Výkonové spínací obvody se od analogových (při stejných proudových hustotách) liší tím, že na funkci obvodu mají velký vliv parazitní indukčnosti jak použitých součástek, tak i vodiču na plošném spoji. Parazitní indukčnosti součástek musíme ošetřit ochrannými prvky (diody, RCD ochrana atd.), ale parazitní indukčnosti spoju musíme omezit pouze správným návrhem desky. A to není vůbec jednoduché. Musíme si uvedomit, že již při spínání proudu 10 až 100 A a vyřadných dobách tranzistoru MOSFET 0,1...1 µs se jedná o takové di/dt, které způsobí úbytek 1 V na parazitní indukčnosti 10 nH, což predstavuje při špatném návrhu pouhý 1 cm a při dobrém návrhu 10 cm spoje! Proto je zvláštní snahou při vedení spojů využít všech technik, směřujících ke snížení parazitních indukčností plošných spojů (široké spoje, vodivé plochy, minimální plochy smyček...).

Obr.6.25: Buzení MOSFETU, snímání proudu a zapojení ochrany.

Důležité je také vhodné umisťení a zapojení blokovacího kondenzátoru C_b. Právě při vypínání muže dojít k prekmitu napětí na parazitní indukčnosti prívodu VCC, který způsobí rušení v další cásti obvodu. Kondenzátor C_b musí tento prekmit pohltit. Hodnota jeho kapacity musí být taková, aby byl kondenzátor schopen pohltit energii parazitní indukčnosti s přijatelným nárustem napětí. Bude-li indukčnost 20 nH, proud 1 A a povolený nárust napětí 0,1 V, vyjde hodnota kapacity $C_b=L.I^2/U^2=2 \mu F$. Použijeme vyšší hodnotu, například 22 µF, nejlépe...
v provedení tantalový elektrolyt, nebo paralelní kombinaci keramického kondenzátoru 100 nF a hlínkového elektrolytického kondenzátoru 22 µF. Toto je také způsob blokování vetšího množství relé. Je-li na plošném spoji umísteno najednou například 8 relé, používá se k jejich blokování jeden společný elektrolytický kondenzátor (například 220 µF) a pro každé relé zvlášť (nebo pro dve dohromady) keramický kondenzátor vhodné hodnoty kapacity (například 100nF).

6.11. Vstupné/výstupní obvody
Za vstupné/výstupní obvody (I/O obvody) budeme pro účely tohoto skripta považovat všechny obvody, zabezpečující styk základní desky plošného spoje s okolím, tedy například porty, napájení, klávesnice, celní panely, cíidla atd. I/O jsou bránou pro rušení, a to obena smery – dovntí i ven. Jednak se mohou chovat jako anténa pro vyzarování rušení, které vzniká na plošném spoji a jednak mohou přijmout vnejší rušení a toto zavést na plošný spoj. Hlavním úkolem při jejich návrhu tedy bude zabránit emisi rušení z desky a odfiltrovat vnejší rušení. Mezi základní návrhová pravidla pro I/O obvody tedy budou patrit predevším fyzická a elektrická separace I/O obvodu od ostatních obvodů na desce plošného spoje, filtrace, zemnení, stínení, minimalizace délky spoju a velikosti ploch pravděpodobných smycík, ochrana pred ESD (elektrostatickými výboji), jištení proti zkratu a pretížení...

6.11.1. Izolace a separace vstupné/výstupních obvodů
Fyzická a elektrická separace vede k vysoké hodnote vazební impedance vuci ostatním obvodům na plošném spoji, a tím i knízké úrovni prenosu rušení. Pod fyzickou separací si představme lokalizaci součástek I/O obvodu do jedné oblasti a jejich oddelení od ostatních částí obvodu příslušnou vzdáleností a izolacním příkopem na plošném spoji. Elektrická separace muže znamenat například filtraci nebo galvanické oddelení I/O od ostatních částí obvodu.

6.11.1.1. Filtrace vstupu a výstupu na plošném spoji
Na obrážku 6.26 je znázornena technika filtrace vstupu a výstupu. V části a) jsou kondenzátory C pripojeny bezprostredně u I/O konektoru a predstavují tak spolu s tlumivkami DLF (Data Line Filter) výborný filtr, potlačující vyzarování vysokofrekvenčního rušení z plošného spoje. Hodnota kapacity kondenzátoru se pohybuje v radě 100pF až 1nF. Nevýhoda tohoto zapojení spočívá v tom, že je nutné tyto kondenzátory pro případ elektrostatických výbojů (ESD) dimenzovat na vysoké napětí – minimálne 1.500 V, ale podle podmínek okolního prostředí se toto napětí může zvýšit na 6.000 až 8.000 V!

![Obr.6.26: I/O filtrace.](image)

Tuto nevýhodu odstranuje varianta b). Bezprostredně u I/O konektoru se nachází soustava tlumivek DLF, která premostuje izolační příkop a bezprostredně následují filtraci kondenzátory. Společný vodic kondenzátoru by mel být pripojen prámo do vodičové plochy GND, která by zároven mela být v bezprostrední blízkosti ukostrena na šasi přístroje.
Jelikož vnejší rušení a ESD je filtrováno až LC filtrem, je nutné v místě spoju mezi I/O konektorem a DLF zajistit co nejvíce větší vazební impedanci vůči jiným spojům plošného spoje, což se nejlépe zajistí tak, že v dané oblasti nebudou existovat v žádné vrstvě žádné spoje. V obou variantách je použita technika izolacíního příkopu, která znamená, že v daném místě neexistuje v žádné vrstvě plošného spoje žádný vodic ani vodivá plocha. Hodnoty kapacit a indukcností je možné vypočítat ze známých vztahů a závisí na kmitočtovém spektru, které mají být pomocí techto LC filtru potlačeny.

6.11.1.2. Galvanické oddelení a premostení

Obr. 6.27: a) galvanické oddelení, b) premostení.

Premostení se používá tam, kde z libovolných duvodu není možné použít galvanické oddelení signálu nebo napájení. Jedná se vlastně o propojení I/O země a země zbyteku systému (GND) premostném izolacíním příkopu ve vhodném místě. Pouze nad tímto místem potom mohou procházet signálové spoje a napájení. Napájení je navíc vhodné oddělit tlumivkou. Pod pojmem izolacíní příkop se opět rozumí absence vodicu ve všech vrstvách plošného spoje, tedy i ve vrstvě GND a Vcc. Tímto zapojením se samozřejmě nevylučuje použití filtrace signálových spojů v oblasti u I/O konektoru.

6.11.2. Ochrana před ESD

Elektrostatický výboj (ESD = ElectroStatic Discharge) muže být generován elektricky nabitými predmety (papír, plastové fólie, nábytek, clovek...). Trvá rádově 200 ps až 10 ns a chová se jako zdroj proudu 1 až 30 A. Ochrana pred elektrostatickým výbojem spočívá v ochraně všech I/O svorek a ochrane plošného spoje pred dotykom. Je nutné si uvedomit, že elektrostatický výboj je velmi rychlý přechodový dej. Nebude-li proudový impuls výboje odveden nízkou impedancí do uzemnění, projeví se nám jako vysokonapetová vlna, která se bude šířit po plošném spoji, a v lepším případě dojde k výpadku funkce zarizení.
6.11.2.1. **Ochrana I/O svorek**

Cílem ochrany I/O svorek pred ESD je jakýmkoliv korektním způsobem proudový impulz odvěst pryc z plošného spoje do uzemnění. Vzhledem k velkému \(\frac{dI}{dt} \) je nutné toto učinit na co nejkratší vzdálenosti. Ztoho vyplývají jednoznacné požadavky na rozmístění ochranných součástek a způsob vedení spojů.

Jednou z možností je použití filtru z obrázku 6.26, pricemž je velmi důležité dodržet co nejkratší vzdálenosti mezi I/O konektorem, tlumivkou a elektrodou kondenzátoru. Stejné tak je důležité zkrátit na minimum cestu od záporné elektrody kondenzátoru ke společnému vodici a jeho pripojení ke kostre prístroje.

Velmi často se pro ochranu pred ESD užívají různé druhy součástek, vetšinou nazývaných společným názvem „Voltage Supressors“. Mezi ne patří například varistory, Zenerovy diody, ESD diody (=obdoba Zenerových diod, určených speciálně pro účely ochrany pred ESD)... Pro návrh vedení spoju techto součástek platí jedno společné pravidlo, v tomto skriptu již mnohokrát uvedené (obrázek 6.28 a). Jsou-li na plošném spoji obzvláště citlivé součástky, je vhodné libovolnou ochranu kombinovat s metodou izolaciího príkopu. I/O konektory a ochrany jsou umístěny v separální oblasti a veškeré další součástky až za premostením príkopu (obrázek 6.27 b). Elektrostatický výboj je odveden na kostru prístroje a nestáčí se rozšířit do elektronického systému za premostením.

6.11.2.2. **Ochrana plošného spoje pred dotykem**

Ochrana plošného spoje pred dotykem zajišťuje takzvaný ochranný pás (guard band) [9]. Jedná se o 1 až 3 mm široký vodivý pás okolo celé desky plošného spoje ze strany součástek i ze strany spoju, který je zhruba každých 15 mm propojen pomocí prokovan do vrstvy vodivé plochy GND (obrázek 6.28 b). Tato ochrana je vlastně založena na pravdepodobnosti, že se obsluha nebo servisní technik při manipulaci s deskou bude dotýkat spíše okraje než objektu uvnitř desky.

Důležité je ochranný pás prerušit v místě izolaciího príkopu a na obou koncích pripojit prokovem do GND. Jinak bychom úplně zrušili význam príkopu. Technika ochranného pásu navíc potlačuje bocní vyzarování desky plošného spoje (obrázek 6.2 c).

![Obr.6.28: Vedení spoju ochranné součástky a), ochranný pás b).](image-url)
Použité zkratky a symboly

BOT – oznacení vrstvy plošného spoje – strana spoju
CPU – (Central Processor Unit) procesor
EMC – (Electromagnetic Compatibility) elektromagnetická kompatibilita
ESD – (Electrostatic Discharge) elektrostatický výboj
FR4 – oznacení nosného materiálu plošných spojů
G, GND – oznacení vrstvy plošného spoje – spolecný vodic (zem)
– oznacení záporné svorky napájení (spolecný vodic nebo zem)
HAL – (Hot Air Levelling) žárové nanesení SnPb pájky
I/O – vstupní/výstupní obvody (svorky)
P, PWR – oznacení vrstvy plošného spoje – napájení
SMD – (Surface Mounted Devices) součástky pro povrchovou montáž
SMT – (Surfaces Mounted Technology) technologie povrchové montáže
TOP – oznacení vrstvy plošného spoje – strana součástek
VCC – kladná svorka napájení (zpravidla 5V u císlícových obvodů)

c – rychlost světla \((3 \cdot 10^8 \text{ m/s}) \)
C – kapacita \([\text{F}]\) nebo \([\text{F/m}]\)
\(C_m \) – vzájemná kapacita \([\text{F}]\) nebo \([\text{F/m}]\)
\(D, d \) – vzdálenost \([\text{m}]\)
E – intenzita elektrického pole \([\text{V/m}]\)
\(f \) – kmitočet \([\text{Hz}]\)
\(h \) – výška, zde zpravidla tloušťka nosného materiálu plošného spoje \([\text{m}]\)
\(H \) – intenzita magnetického pole \([\text{A/m}]\)
\(I \) – proud \([\text{A}]\)
\(I \) – délka \([\text{m}]\)
\(L \) – indukcnost \([\text{H}]\) nebo \([\text{H/m}]\)
\(L_m \) – vzájemná indukcnost \([\text{H}]\) nebo \([\text{H/m}]\)
\(R \) – odpor \([\Omega]\)
\(r \) – polomer \([\text{m}]\)
\(S \) – plocha, průřez \([\text{m}^2]\)
\(t \) – tloušťka plošného vodice \([\text{m}]\)
– čas \([\text{s}]\)
\(t_r, t_f \) – doba trvání nábežné a sestupné hrany lichobežníkového impulzu \([\text{s}]\)
\(t_{pd} \) – zpoždění prchodu signálu \([\text{s/m}]\)
\(U \) – napětí \([\text{V}]\)
\(v \) – rychlost \([\text{m/s}]\)
\(w \) – šířka plošného vodice \([\text{m}]\) nebo \([\text{mil}]\)
\(X_{talk} \) – preslech \([\text{dB}]\)
\(Z, Z_0 \) – impedance \([\Omega]\)
\(d \) – hloubka vniknutí \([\text{m}]\) (skin efekt)
\(\varepsilon_0 \) – permittivita vakua \((8,8 \cdot 10^{-12} \text{ F/m})\)
\(\varepsilon_r \) – relativní permittivita \([-]\)
\(? \) – vlnová délka \([\text{m}]\)
\(\mu_0 \) – permeabilita vakua \((4 \cdot 10^{-7} \text{ H/m})\)
\(\mu_r \) – relativní permeabilita \([-]\)
\(? \) – merný elektrický odpor \((?_{Cu}=17,8 \cdot 10^{-9} \text{ O.m})\)
Literatura